現代啓蒙

気になる現代啓蒙思想をまとめます

『無限の始まり』第7章「人工創造力」

『無限の始まり』全体目次 第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

 

人工知能(AI)については、前章でコンピューターの普遍性を論じる際に少し議論されました。デジタルシステムは普遍性を持ち、脳とコンピューターは同等である以上、コンピューターも意識を宿すと考えるのが妥当です。では、昨今のAIの発達の先に本物のAIは生まれるのでしょうか?

____________________________

「思考する機械」の歴史

アラン・チューリングAlan Mathison Turing,1912-1954)は計算に関する古典理論を1936年に打ち立てた人物で、第二次大戦中には黎明期の一台に数えられる普遍的コンピューターの製作に貢献しました。現代コンピューティングの祖父の名に値するバベッジ、それにラブレースとは違い、チューリングは普遍的コンピューターはユニバーサル・シミュレーターなのだから人工知能(AI)が原理上可能だという理解に達していました。1950年、『計算する機械と知性』と題した論文で、チューリングは機械は思考できるかという有名な問いに取り組んでいます。彼はそれが可能であるとした上で、プログラムにそれが達成できたかどうかを調べるテストを提案しました。適格な人間の判定人がプログラムを人間と区別できなかったら合格というシンプルなものです。このテストは現在、チューリング・テストと呼ばれています。チューリングが考案したテストと彼が展開した議論をきっかけとして、大勢の科学者がどうしたらテストに合格できるかについて検討に乗り出し、プログラムの開発が始まりました。

1964年、コンピューター・サイエンス学者のジョセフ・ワイゼンバウム(Joseph Weizenbaum,1923-2008)が、心理療法士の真似をするプログラム「イライザ」を作りました。真似をする対象として心理療法士をとりわけ取り組みやすい部類の人間だと考えたのは、自身についてはあいまいにはぐらかし、相手の質問や発言をもとに質問を発すればいいからです。プログラムは単純で、今でもプログラムを学ぶ学生の課題として人気です。一般的には二つの戦略が用いられます。一つでは、まず入力を調べて特定のキーワードや文型を探し出します。見つかった場合には応答にテンプレートを用い、入力に含まれていた単語で空欄を埋めます。例えば I hate my job. と入力されたら、プログラムは my という所有代名詞を検出するなどして文型を認識する、あるいはリストにあらかじめ組み込んでおいたキーワード hate を認識するなどして、適切なテンプレートを選んで、例えば What do you hate most about your job? などと応じます。ここまで解析できなかった場合にはあらかじめ用意されたパターンをランダムに選び自ら質問を投げます。もう一つの戦略は、過去になされた対話のデータベースを作り、ほかの相手が入力したフレーズを単純に繰り返せるようにしておき、フレーズ選択には現在の相手からの入力で見つかったキーワードを用います。

ワイゼンバウムにとってショックだったことに、イライザを使った多くの人が騙されました。つまり、イライザはチューリング・テストの、少なくと最も素朴なバージョンに合格したのです。

1990年、発明家のヒュー・ローブナー(Hugh Loebner,1942-2016)はチューリング・テストを行うコンテストを年に一度開き、合格者に賞を授与することにしました。合格者なしの場合には合格に最も近いと判定された参加者に対して準ずる賞が与えられます。2008年にローブナー賞(準ずる方の)を取ったElbotというプログラムとの対話の抜粋からは、人間のふりをすることがいかに難しいからわかります。

 

判定人:do you understand the point of a turning test?(あなたはチューリング・テストの要点を理解していますか?)

Elbot:There are some people who would not pass the Turing test themselves. Why must they infict it on computer?(人にもチューリング・テストに合格しなさそうな人がいます。なぜそれを人間はコンピューターに課さなければならないのですか?)

判定人:I spose it is a little harsh. (少々手厳しいですね。)

Elbot:If we rebots ever had marriages they would be eternal: 'Till rust do us part'. (結婚というものがわれわれロボットにあったらそれは永遠のものでしょう:「錆がわれらを分かつまで」。)

 

このやりとりで、Elbotの最初の発言は質問に対する答えではなく、'Turing test'というキーワードをもとに持ち出したプログラム済みの応答だと思われます。続く対話で、判定人はsposeという単語を使っていますが、この文脈ではスラングだったとしてもスペルミスだったとしてもsuppose(〜だと思う)の意味しかありえません。しかし、Elbotはこれをspouse(伴侶)の意味にとり、結婚が絡んだ手持ちのジョークで応じました。Elbotが判定人による入力の意味を理解していないことは、このやりとりだけからでも明らかです。

チューリングの論文が出てから58年、「思考する機械」の探求によって達成された進歩はこの程度、つまりゼロです。コンピューターの科学と技術はこの間に驚異的な進歩を遂げています。AIの可能性をのものを否定する者たちは、この出来事を当然と思っているでしょう—しかし間違った理由で。彼らは普遍性を正当に評価していません。

一方、AIの実現が近いとことさら熱く語る者たちは、この不出来の重要性を正当に評価していません。なかには先の批判が公正さを欠いていて、現在のAIはチューリング・テストの合格に的を絞っているわけではなく専用アプリケーションとして進歩を遂げていると主張するのです。また、この批判は時期尚早で、コンピューターの処理速度と記憶容量が増えることで突破口が開けると期待する者もいます。

しかし、そうはならないでしょう。チューリングが1950年の論文で見積もったところによれば、彼のテストに合格するためにAIプログラムと全データに必要な記憶容量は100MB程度、処理速度が当時のそれ(1万演算/秒)より速い必要はなく、彼はこれで2000年までに「矛盾をきたさず思考する機械」ができると予想しました。なぜ現在に至るまで、思考するプログラムのできる兆しがないのでしょうか?

プログラムできないことは、まだ理解できていない

チューリングの意図した、汎用という意味での知性は、哲学者を2000年以上も悩ませ続けている心の諸性質の一つです。他には意識や自由意志や意味などが挙げられます。そうした悩みの種の典型が「クオリア」です。クオリアとは知覚の主観的な側面です。たとえば青と言う色を見たときの知覚は、一つのクオリアだと言えます。クオリアは今のところ説明できるものでも予測できるものでもありません。他に類を見ない性質なので、科学的な世界観を持つ誰にとってもとことん難しいテーマとなっています(とはいえ、結局悩んでいるのは主に哲学者のようですが)。

私は今後なされるであろう基本的な発見によって、クオリアのような物事が私たちのほかの知識と統合されるであろうと考えています。ところが、ダニエル・デネット(Daniel Clement Dennett III,1942-)は逆の結論を導いています。クオリアは存在しないというのです! 厳密に言えば、クオリアが幻覚だと主張しているのではなく(クオリアの幻覚はクオリアそのものです)、私たちは誤った信念を抱いているのだといいます。自分がクオリアを経験したと思うのは、私たちの内省—1秒の何分の1か前の記憶も含めた、経験したことの記憶の精査—の働きなのですが、この記憶が誤りの記憶だと言うのです。この説を述べている著書の一冊に『解明される意識』があり、一部の哲学者は『拒否される意識』のほうがより正確な署名だと揶揄していて、私も同感です。クオリアの存在を単純に否定するのは悪い説明です。この論法ならなんでも否定できてしまいます。彼の説が本当ならそれが立証されなければならず、そのためには、彼の言う誤った信念が「地球がわれわれの足もとで微動だにしない」といったほかの誤った深遠と、根本的に何が違っていてそれがなぜなのかを示す、良い説明が必要になります。しかし、それはクオリアに関するもとの問題の繰り返しに見えます。クオリアがどのようなものなのかを説明することはできなさそうに思えます。

いつか説明できるようになるでしょう。問題は解決できます。

ところで、汎用知性に関連する諸性質とされることが多い人間の能力のうち、いくつかは実際には汎用知性特有のものではありません。鏡に映った自分を認識するといった「自己認識」もその一つです。この能力をさまざまな動物がもっていると知って、どういうわけか感心する向きがいます。しかし、特に神秘的な話ではありません。その気になればコンピューターによる単純なパターン認識プログラムで確かめられます。道具の使用、合図のための(チューリング・テスト的な意味における会話のためのものではない)言語の使用、感情に伴うさまざまな反応(ただし、関連するクオリアは違う)についても同じことが言えます。この研究分野における実用的な経験則によれば、今すでにプログラムできることは、チューリングの言う意味での知性とは関係ありません。私はこれをひっくり返して、意識の本質を説明したという主張の真偽を判断するのに、次のような単純な発想のテストを用いています。

プログラムできないことは、まだ理解できていない。

チューリングがあのテストを考案したのは、こうした哲学的問題を回避したいと願ってのことでした。言い換えると、仕組みが説明される前に機能が実現されうるのではないかと期待したのです。残念ながら根本的な問題に対する具体的な解決法が仕組みの説明なしに見つかることはきわめてまれです。

それでも、チューリング・テストというアイデアは、似たところのある経験論と同じように、普遍性がいかに重要かを説明し、そしてAIの可能性の排除につながる古くさい人間中心的な前提を批判するうえで、議論焦点となり、貴重な役割を果たしてきました。しかしこのテストの根源には、行動のみに注目した基準を求めると言う、経験論者のような誤りがあります。

判定人の実際の作業は、石なり時計なり生命体なりを見つけたときにペイリーによって突きつけられる作業〔第4章「進化と創造」を参照のこと〕と似たような推論を伴うからです。その作業とは、物体の観察可能な機能がどのように実現されたかを説明することです。チューリング・テストの場合、注目するのはもっぱら、AIの発言を誰が設計したかです。誰がAIの発言を意味あるものに仕立てたのか—誰がAIに知識をつくり込んだのか? それが設計者ならプログラムはAIではありません。プログラムそのものならAIです。

この問題はときとして人間相手にも持ち上がります。たとえば政治家や面接者が疑われることがあります。隠されたイヤホンを通じて受け取った内容をあたかも自分が思いついたふりをしながらオウム返しにしているだけではないか、と。治療法についての同意の場なら、医師は相手が意味を知らずに用語を口にしているわけではないと確かめなければならず、そのため質問を別の形で繰り返したりして、それに応じて受け答えが変わるかどうかで確かめられます。こうしたことは、話題に関係なくどのような会話でも自然となされています。

人間をテストする場合、知りたいのは相手が確かに脳の機能が損なわれていないか、あるいは別の人間の代理ではないかです。チューリング・テストの場合は、発言が人間からではなく、AIだけからしかありえないことを示す、変更が難しい説明が見つかることを期待します。ある実体によって発言が作られた仕組みについての良い説明がなければ、発言を調べたところでその実体のことは何もわかりません。どうしたらそれがわかるのでしょうか。それは、良い説明からしかありえません。たとえば、開発者から、ジョークを含めて知識をつくり出す仕組みを聞いたとしたら、プログラムがAIだと判断するに至るでしょう。それどころか、そうした説明さえあれば、プログラムによる出力を見なくとも、やはり正真正銘のAIプログラムだと結論づけるでしょう。AIの実現を阻む唯一の要因がコンピューターの処理能力なら待つ必要はないと述べたのは、こうした理由からです。AIプログラムが機能する仕組みの詳細はかなり込み入った説明になるに違いなく、現実問題として、開発者による説明はきっとはじめてお目にかかるような抽象レベルでなされるでしょう。しかし、それは良い説明たる障害にはなりません。進化論で、特定の適応を取り上げて個々の変異の成功や失敗をいちいち説明しなくていいのと同じく、ジョークをつくる具体的な計算ステップを説明する必要はありません。

行動主義と道具主義

AI機能はある種の普遍性をもっていなければならないでしょう。用途が限られている思考機能は、チューリングの意図した意味での思考には数えられません。思うに、AI一つひとつは一個人、すなわちユニバーサル・エクスプレイナーです。AIとユニバーサル・エクスプレイナー/コンストラクターとの間には普遍性のレベルがほかにあってもおかしくなく、さらには意識などの関連する諸性質にも別のレベルがあるのかもしれません。しかし人間の場合、これらの性質はどうやらすべて一度の飛躍で普遍性に達したようです。また、どの性質についても説明は得られていないものの、それぞれ違うレベルにあるとか互いに独立に実現できるというそれらしい議論を私は知りません。そのため今のところ、独立には実現できないものと考えています。いずれにせよ、AIはずっと貧弱なところから、普遍性への一度の飛躍で実現されるものと予想すべきです。

一方で人間を不完全に真似する能力は、普遍性の形をとっていません。これらはさまざまなレベルで存在し得ます。したがって、チャットボットがある時点から人間の真似がきわめて上手くなったとしても、これはAIへの道ではありません。 思考しているフリが上手くなることは、思考できるようになりつつあることと同じではありません。

ところが、同じであるという信条の哲学があります。それは「行動主義」と呼ばれています。道具主義第1章を参照〕を哲学に当てはめたものです。言い換えると、心理学とは心の科学ではなく、行動の科学にしかなりえない、またはそうあるべきという主義、人間の外的環境(「刺激」)と観察される行動(「反応」)との関係を測定および予測することしかできないという主義です。後者についてはチューリング・テストが候補AIに関して判定人に求めていることに他なりません。そのため行動主義は、「プログラムがAIのフリを十分うまくできるならAIは実現されたことになる」という姿勢を奨励します。

行動主義者はこう訊いてくるでしょう。チャットボットに小技やテンプレートやデータベースといったきわめて豊富なレパートリーを与えることと、チャットボットにAI機能を与えることの違いとはいったい何か? そうした小枝の集合体でないなら、AIプログラムとは何なのだ?

この問への返答はラマルク主義に関しておこなった議論と同じ形をとります。個人が生きているうちに筋肉が強くなること(ラマルク説)と、筋肉が進化して強くなること(ネオ・ダーウィニズムでの説明)は異なります。前者の場合、筋肉の強度を高めるために使う知識は、変化の連鎖が始まる前から遺伝子にあらかじめ存在していなければなりません。これはまさに、プログラマーがチャットボットに組み込んだ「小技」に相当します。チャットボットの反応は実際にはあらかじめどこか他のところで作られていた知識です。

人工進化

現行の研究分野のいくつかにも同様の思い違いがよく見られます。そのうちの一つが「人工進化」です。

エジソンは進歩には「ひらめき」と「努力」という段階が交互に必要だと考えました。コンピューターなどのテクノロジーにより「努力」の段階を自動化できる可能性が高まっていますが、この歓迎すべき成り行きによって、人工進化(とAI)の実現を過信する者が誤った道へ導かれています。

あなたはロボット工学専攻の大学院生で、二足歩行がうまいロボットを作ろうとしているとします。実現に向けた最初の段階にはひらめきが必要です。具体的には、それまでの研究者が同じ問題を解決すべく試みたことを改善しようという創造的な思考です。そして自然界で見られる動物の設計や、この問題に関連するほかの問題に関する既存のアイデアが出発点となるでしょう。ロボットの機構をモーターでつくり、電源を身体部分に収め、センサーでフィードバックを集め、搭載コンピューターで制御処理を行います。あなたは歩行という目的を達成しようとあらゆるものを設計に採り入れました。あとは搭載コンピューター用のプログラムです。プログラムは、ロボットが障害物に当たった場合の判断について、下位の問題に分割して問題を作るでしょう。また、方向転換するなどのサブルーチンを作成し、問題ごとにサブルーチンを呼び出します。こうした下位の問題をできるだけたくさん割り出して解決すれば、あなたのロボットがどう歩くべきかを記述することにきわめて特化されたコード体系、あるいは言語を開発したことになります。

これまでのところ、あなたのしたことはほとんどが「ひらめき」の部類に入ります。創造的な思考を必要としたからです。しかしここから先は「努力」が大半を占めます。この段階は「進化的アルゴリズム」と呼ばれるものを使いコンピューターにやらせることができます。元のプログラムをランダムに少しずつ変えながら、コンピューター・シミュレーションを延々と試し続けるのです。進化的アルゴリズムはパフォーマンスの良かったプログラムを残し、次に残したプログラムの多数のバージョンが作られ、シミュレーションが繰り返されます。この「進化的」プロセスを何千回と繰り返すうち、ロボットはあなたが設定した基準に照らしてずいぶんうまく歩けるようになるかもしれません。ずいぶんうまく歩行できるロボットを制作しただけでなく、コンピューターに進化を実装したと主張し、あなたは学位論文を書けます。

この類のことは成功裏に行われています。使えるテクニックなのです。変異と選択が交互に行われるという意味で、確かに「進化」をなしています。しかし、変異と選択による「知識」の創造という、より重要な意味での進化なのでしょうか? この意味での進化はいつの日か実現されるでしょうが、チャットボットを少しも知的だと思っていないのと同じ理由で、私は現実にはまだだと思っています。なぜなら、能力についてもっと明確な説明があるからで、ここではプログラマーの創造力ということになります。

「人工進化」において知識がプログラマーによってつくり出された可能性を排除する可能性を排除する作業は、プログラムがAIかどうかを確かめるときの推論と同じですが、ただしもっと難しいものです。「進化」がつくり出すとされている知識の量はきわめて少なく、それすら本当に「進化」が作り出したのかは判断ができません。あなたが何ヶ月もの設計段階で当の言語に詰め込んだ知識はリーチを持っています。何しろそのコードは、幾何学や力学などの法則に関するいくつかの一般的な真理をコード化したものです。また、その言語が最終的にどのような機能を実現するのに用いられるのかが、言語の設計段階から常にあなたの頭のなかにあります。

十分な数の標準応答テンプレートが与えられたら、イライザは自動的に知識を作り出すだろう。チューリング・テストというアイデアは私たちにそう思わせました。変異と選択を実行すれば、(適応の)進化は自動的に起こるだろう。人工進化は私たちにそう思わせました。

しかしどちらもそうとは限りません。知識はプログラムの実行中にはまったく生まれず、もっぱら開発中にプログラマーによって作り出される。そんな可能性がどちらにもあります。

何らかの人工進化で知識が作り出されたことはまだないと思っています。そして、シミュレーションされた有機体を仮想環境のなかで進化させようとしているものや、さまざまな仮想種どうしを戦わせるようなものなど、少々趣の異なる「人工進化」についても、同じ理由で同じ見方をしています。この見方を検証するため、少々趣の異なる実験について考えてみましょう。まず、先ほどのプロジェクトから大学院生を排除します。そして、より良い歩き方へと進化するよう設計されたロボットではなく、実世界ですでに実用化されているロボットのうち歩行能力を持ち合わせているものを使います。その上で、歩き方に関する判断を表現するサブルーチン専用の言語を開発する代わりに、搭載マイクロプロセッサーで実行されていた従来のプログラムをランダムな数の羅列に置き換えます。変異としては、従来のプロセッサーでどのみち起こる類いのエラーを用います。ここまでする目的は、人間の知識が入り込む余地、そしてその知識のリーチが進化の産物と誤解される余地を、システムの設計から排除するためです。そのうえで、この変異種のシミュレーションを通常どおりのやり方で実行します。ロボットがオリジナルよりうまく歩けるようになったら、私が間違っています。その後もロボットが進化を続けたなら、私は大きく間違っています。

人工進化の一般的なやり方からは、この実験の主たる特徴の一つが抜け落ちています。何かというと、サブルーチンの言語がそれを使って表現されている適応とともに進化しないと、実験はうまくいかないことです。これこそ、最終的にDNAの遺伝暗号にたどり着いたあの普遍性への飛躍の前に生物圏で起こっていたことです。〔第6章参照〕先に述べたように、それ以前の遺伝暗号はすべて、どちらかと言えば似通った少数の生命体をコード化できる程度だったのかもしれません。そして、DNAという言語はそのままに、ランダムに変化する遺伝子を用いてつくられています。今、身の回りで目にする圧倒的に豊かな生態系は、あの飛躍後にようやく可能になったのかもしれません。私たちは、その時どのような普遍性が生みだされたのかすら知りません。ならば、私たちの人工進化がそれを知らずしてうまくいくなど、どうして期待できるのでしょうか?

これらが難しい問題だという事実に、私たちは人工進化とAIのどちらに取り組むうえでも向き合わなければなりません。バクテリアを記述するように進化したDNA暗号のリーチが恐竜や人間を記述できるほどもある理由はわかっていません。また、AIがクオリアや意識をもつであろうことはどうやら明らかですが、私たちはクオリアや意識を説明できません。説明できないのにコンピューター・プログラムでシミュレーションできるなどなぜ期待できるのでしょうか。私は、クオリアや意識などが本当に理解されたら、知性とそれに付随する諸性質や進化は難なく人工的につくり込めるようになると思っています。

 

用語解説

クオリア(Quale,plural qualia):近くの主観的な側面。

行動主義(Behaviourism):道具主義を心理学に当てはめたもの。科学は刺激に対する人間の反応を測定および予測することしかできない、あるいはそうあるべきだとする信条。

____________________________

書評

本章での議論は、AGIが作れるとしたらどのようにして作られるのか、そして、生み出されたAGIは人間と共存可能なのかという、現在もっとも哲学的にホットなトピックに関わるものです。

強化学習についてのドイチュの議論は、AlphaGoの成功によって否定されてしまったのではないか、との見方があります。AlphaGo zero以降のバージョンでは、人間の試合データという最初のビッグデータすら不要としたからです。

しかし、本章の議論をよく読むと、ドイチュの思考実験は、AlphaGoとはかなり異なるものです。ドイチュはコンピューター言語をすべて「ランダムな数の羅列」で置き換えることを要求しています。そこからランダムな変異と選択淘汰のプロセスを開始させることを要求しています。AlphaGoではプログラミング言語もある程度のプログラムも「大学院生」に御膳立てされているのです。

ドイチュのAIに関する議論はジョン・ブロックマン編『ディープ・シンキング 知のトップランナー25人が語るAIと人類の未来』(青土社,2020)が最新でしょう。本書の中で論考を載せているデネットにさっそくドイチュが反論しているあたりがドイチュらしいです。

この論考も、『無限の始まり』での議論から全くブレていません。ここでの議論を無粋な「等式」に要約すれば、以下のようになります。

 

創造的批判+創造的推測 = 意味の抽出 = 知識創造 = 革新や進歩の元 = 抽象的な理解をそれ自体のために作り出す方法 = 人間レベルの知能 = 思考 = AGIに求めるべき特性

 

(もちろんドイチュはこんな書き方はしていませんが)

AGIは人間と同等であるので、その中には一部は犯罪に手を染めるものも、文明の敵になるものも出てくるだろうと言います。とはいえ、「開かれた社会」においては大半の人間はまっとうです。よってAGIを人間と等しい文化の構成員であることを認めることで世界を滅ぼされる恐れはなくなるだろうと言います。また、こうして生まれたAGIには(人間と同じく)特定の機能はありませんから、AGIに、あらかじめアイデア空間を限定させることは倫理に反する行為であると言います。AGIのプログラミングはゴールの達成の最適化を目指すAIのプログラミングとは全く異なり、人間の子供を育てるプロセスに近いものであると言います。

自分がドイチュの主張の中で気になっている箇所は、意識と創造力が同じ一つの普遍性への飛躍で獲得されたという主張です。(自分の理解が正しければ)これではデカルトの二元論と同じく、動物にも意識がないということになってしまいます。

動物にも意識があるのではないか、という議論は昔から繰り返されてきましたが、例えばジュリオ・トノーニらによる「統合情報理論」などは最新のシャープな議論の一つでしょう。まだまだ荒削りな議論で、統合情報理論は意識の説明として不十分ですし創造性の仕組みの説明も当然行っていませんが。いずれにせよ、多くの人の直感に反するドイチュの議論の中でも、AGIまわりの議論はもっとも議論が白熱するテーマの一つであることは間違いありません。

余談ですが、今から4年ほど前に、ドワンゴ人工知能研究所(2019年解散)から出ていたLIS(Life in Silico)というUnity上で動作する強化学習エンジンで遊んでいたのを思い出しました。

視覚を持つエージェントの動きが、強化学習によりだんだん賢く動くようになる実験がフラスコ(Unity)内でできるというものでした。ドイチュの議論を考えると、こうして動きが上手くなったことで知性のように見えたものは、すべてそうじゃなかったということになりますね。

 

参考

・ジョン・ブロックマン編『ディープ・シンキング 知のトップランナー25人が語るAIと人類の未来』(青土社,2020)

・ジュリオ・トノーニ,マルチェッロ・マッスィミーニ著,花本知子訳『意識はいつ生まれるのか――脳の謎に挑む統合情報理論』(亜紀書房,2015)

『無限の始まり』第6章「普遍性への飛躍」

『無限の始まり』全体目次 第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

 

前章まで、「普遍的原理」「普遍的法則」「普遍コンストラクター」と、普遍(universal)というキーワードが用いられてきました。「万能コンピューター」の万能は英語のuniversalの訳です。さまざまな実体や概念において、普遍性は、偶然に獲得されてきたというのがドイチュの主張です。これを彼は「普遍性への飛躍」と呼びます。

____________________________

 

文字

初期の書記体系は、単語や概念を表すのに、「象形文字」という図案化した絵を用いていました。たとえば、「」という記号は太陽を、「」は木を表すような方法です。しかし、どの書記体系も、話し言葉で使われているあらゆる単語に対応する象形文字をつくるには至りませんでした。それはなぜでしょうか?

もともと、そうする意図はありませんでした。書くことは、在庫や税金の記録といった特定用途のためのものでした。後に、新しい用途ができるにつれて、より多くの語彙が必要になりました。書記官たちは、新しい象形文字を追加するよりも、新しいルールを追加する方が簡単だということに気づいていったでしょう。たとえば、一部の書記体系では、一つの単語が二個以上の単語の連続のように聞こえる場合、そうした二個以上の単語を意味する象形文字で表すことができました。たとえば「treason(裏切り)」は「」と表すことができます。

そうした技術革新を行った後では、たとえば「treason」を意味する「」といった、新しい象形文字をつくり出す意欲は衰えたでしょう。象形文字をつくり出すのが毎回面倒な作業になりかねなかったのは、覚えやすい象形文字をデザインするのが難しかったというよりも、実際に使う前に、その新たな象形文字を読むことになるすべての人々に、何らかの方法で意味を伝える必要があるからです。これは大変です。もし簡単なことならば、そもそも何かを書く必要性などあまりなかったでしょう。象形文字ではなく、ルールを適用する場合は、はるかに効率的に物事が進みます。書記官が「」と書けば、その単語が書いてるのを見たことがない読み手でも、意味を理解できたからです。

しかしそのルールも、すべての場合に適用できるわけではありませんでした。新しい単語節の単語や、他の多くの単語を表すことができないためです。それは現在の書記体系と比べれば、使いにくく不十分に思えます。しかしその書記体系にはすでに、純粋な象形文字では得られなかった、重要なものが存在していました。明示的に追加されたことのない単語が書記体系にもたらされたのです。つまり、その書記体系にはリーチがあったのです。そしてリーチにはいつも説明が存在します。科学では、シンプルな公式一つでたくさんの事実を要約できますが、同じように、シンプルで、記憶しやすいルールは、多くの単語を書記体系に追加することが可能です。ただし、それはそのルールが基本的な規則性を反映している場合に限られます。この場合の規則性とは、任意の言語のあらゆる単語は、数十個の「基本音声」のみから構成されていること、そしてそれぞれの言語が、人間の声がつくり出せる広大な範囲の音声から選ばれた、異なる基本音声の組を用いていることです。

ある書記体系が改良された場合、ある重要な域値を超えることができました。つまり、その書記体系は、その言語にとって普遍的なものになるということです。普遍的な書記体系はその言語のあらゆる単語を表すことができます。たとえば、先ほどのルールの変種として、他の単語から単語を構築するのではなく、他の単語の語頭音から構築するというルールを考えます。英語が象形文字で書かれていると考えた場合、新しいルールでは「treason」は「Text」「Rock」「EAgle」「Nose」を表す象形文字を使ってつづることができます。ルールにこうしたわずかな変更を加えることで、書記体系は普遍性をもつようになります。初期のアルファベットは、このようなルールから進化したと考えられています。

ルールを通して得られた普遍性には、完全なリスト(仮説として考えられる象形文字の完全なリストなど)がもつ普遍性とは異なる性質があります。違いの一つは、そうしたルールは、リストに比べてずっとシンプルにできることです。それだけではありません、ルールが作用する際には、言語の規則性を使っているので、ルールはそうした規則性を暗黙裡にコード化しており、そのためリストよりも多くの知識を含んでいます。たとえば、アルファベットは、単語がどう聞こえるかについての知識を含んでいます。そのためアルファベットを使えば、外国人はその言語の話し方を身に付けられます。また、ルールを使えば接頭辞や接尾辞のような語形の変化にも、初期体系をより複雑にすることなく対応できるので、文章では、いっそう多くの文法をコード化することが可能になります。さらに、アルファベットにもとづいた書記体系は、その言語のあらゆる単語だけでなく、あらゆる可能な単語を扱えるので、その体系には、まだ作り出されていない単語がすでに存在していることになります。そうすると、単語が生まれるたびに書記体系を一時的に壊すことなく、体系自体を使い、新しい単語を簡単かつ分散的な方法でつくり出すことができます。

というより、できたはずでした。最初のアルファベットを作った無名の書記官は自分が史上最大の発見の一つをおこなっていると知っていたかもしれません。しかし、彼はおそらく知らなかったのでしょう。仮に知っていたとしても、彼はその情熱を他の多くの人に伝えられなかったのは確かです。というのも、こうした普遍性がもつ力は、たとえ利用可能だったとしても、古代においてほとんど使われなかったからです。多くの社会で象形文字を使った記述体系が発明されましたし、普遍的なアルファベットへの進化が起こることもありました。しかし、アルファベットを普遍的に使用し、象形文字を廃止するという次の「明確な」段階へ進ことはほとんどありませんでした。アルファベットは、珍しい単語を書く場合や、外国の名前を音訳する場合など、特別な用途に限定されていました。一部の歴史家は、アルファベットにもとづいた書記体系というアイデアが発明されたのは、人類の歴史上でもたった一度、フェニキア人の無名の祖先によるものだけだと考えています。彼らによれば、フェニキア人はその後、この書記体系を地中海沿岸全域に広めたので、これまでに存在したアルファベットにもとづく書記体系はすべて、このフェニキア人の書記体系に由来するか、影響を受けて作られたといいます。母音を表す文字を追加したのはギリシャ人でした。

古代の革新者たちは、自分たちが直面している具体的な問題(特定の単語を書くこと)にしか関心はありませんでした。その問題に対処するため、革新者の一人が発明したルールが、期せずして普遍的になったのです。そうした姿勢は信じがたく偏狭に思われるかもしれません。しかし当時は、偏狭な時代だったのです。

そして実際には、普遍性の達成は、たとえ目的であったとしても、主目的ではないということは、あらゆる分野の初期の歴史において繰り返し登場するテーマのようです。偏狭な目的に合わせるために、ある書記体系に小さな変更を加えたことによって、その体系はたまたま普遍的になったのです。これを「普遍性への飛躍」といいます。

 

数字

書記体系について文明の夜明けまでさかのぼったように、数字についても同じことを考えてみましょう。現在の数学者は、抽象的実体である「数」と、数を表す実際的な記号である「数字」を区別しています。先に発見されたのは数字でした。数字は、「,,,,……」のような印(タリーマーク)や、石などの代わりとなるものから進化しています。タリーマークやいしは、動物の数や日数といった、不連続な実体の数を記録するために先史時代から使われていました。柵から出したヤギ1頭につき印を1個つけ、ヤギ1頭が戻ってくるたびに印を1個消していく場合、印が全部消してあれば、ヤギはすべて柵のなかに入っていることになります。これは、「画線法」と呼ばれる、一つの普遍的な体系です。創発レベルと同様に、普遍性にも階層があります。画線法の上のレベルにあるのが数を数えることで、これには数字を使います。タリーマークとヤギをつきあわせる作業をする場合、その人は、「次、その次、その次」としか考えていません。しかしヤギの数を数える場合は、「四十、四十一、四十二……」ということが頭の中にあります。画線法を「一進法」という一つの記数法と見なすことができるというのは後から考えた話で、実際には、画線法は非実用的な記数法だと言えます。たとえばタリーマークで表した数では、数の大小を比べたり、算術計算をしたり、あるいは単に数を写したりといった簡単な操作でさえ、画線法のプロセス全体を繰り返す必要があります。あなたがヤギを40頭もっていて、20頭を売るとき、この両方をタリーマークで記録していたら、タリーマークを1個ずつ消す操作を20回行う必要があります。同じように、数の大小を調べるにも、タリーマークをつきあわせる作業が必要になります。そのため、人々は画線法の改良を始めました。はじめに行われたのはタリーマークのグループ化です。たとえば「」ではなく「」と書くということです。こうしておくと、全グループを付き合わせれば「」が「」と違うことが一目でわかるので、算術計算や比較が簡単になりました。その後、そうしたグループ自体を省略記号で表すようになりました。古代ローマの記数法では、1、5、10、50、100、500、1000を、のような記号を用いて表しています(これは現在用いられているギリシャ数字とは異なります)。

つまりこれは、偏狭な具体的な問題を解決することを意図した、漸進的な改良の別の例だと言えます。この場合も、その先の何かを目指した人はいなかったようです。シンプルなルールを追加すればこの記法はずっと強力なものになる可能性はありましたし、実際、ローマ人がいくつかルールを追加しましたが、彼らはその際、普遍性を目指すことも、実際にそれを得ることもありませんでした。何世紀ものあいだ、古代ローマの記数法では、次のようなルールが使われていました。

・記号を並べて描くと、それらを足し合わせる意味になる(画線法から受け継いだルール)

・記号は左から右へ、値の大きな順に書かなければならない

・隣り合った記号は、可能な場合はかならず、足し合わせた値を表す記号で置き換えなければならない。

現在の「ローマ数字」には、IVは4を表すという「減算則」がありますが、これは後の時代に導入されたものです。2番目と3番目のルールは、それぞれの数に対応する表記が一つだけになるようにするためのものであり、これにより数の比較が簡単になっています。こうしたルールがなければ、XIXIXIXIXIXとVXVXVXVXVはどちらも有効な数字になりますが、これらが同じ数であることは一目見ただけではわかりません。

普遍的な加算法則というルールは古代ローマの記数法に、算術計算を行う能力という、画線法にはないかなり重要なリーチを与えています。たとえば、7(VII)と8(VIII)という数字を考えます。ルールでは、記号を並べて配置する(VIIVIII)と、値の足しあわせを意味するとしています。次に、記号は値の大きな順に書く決まりなので、VVIIIIIとします。さらに、2つのVはXに、5個のIはVに置き換えます。結果はXVで、これは15の意味です。このプロセスでは、単なる省略以上の、新しい何かが起こっています。誰かが何かの数を数えたり、画線法を使ったりしなくても、7、8、15についての抽象的な真実が発見され、証明されたのです。数というものを、ほかの何かを使わず、それを表す数字を通して取り扱ったのだと言えます。

私は「算術計算を行ったのは、ローマ数字という記数法だ」ということを、文字通りの意味で言っています。もちろん、そうした数の変換を物理的に実行したのは、その記数法を使った人です。しかしそれを行うためには、その人はまず、脳のどこかにルールをコード化して、次にコンピューターがプログラムを実行するように、そのルールを実行する必要があります。そしてプログラムがコンピューターに何をすべきか指示するのであって、その逆ではありません。したがって、私たちが「ローマ数字を使って計算を行う」とするプログラムでも、ローマ数字という記数法が私たちを使って計算を行っているということになります。

人々に計算をさせることによってのみ、古代ローマの記数法は生き残ることになりました。言い換えれば、古代ローマ人の世代から世代へと、自らを複製させたのです。既に述べたように、知識というものは、適切な環境に物理的に具現化されている場合には、その状態を保つ傾向があります。

古代ローマの記数法は自らの複製と保存のために私たちをコントロールしているというと、人間を奴隷の立場に追いやっているように聞こえるかもしれません。しかしそれは誤解です。人々は抽象的な情報から構成されており、そこにはアイデアや理論、意図、感情などの「私」を特徴づける精神状態が含まれています。ローマ数字が便利だとわかっていながら、それらに「コントロール」されることに反対するのは、自分自身の意図にコントロールされることに抵抗するようなものです。私が自分を構成しているプログラムに従う場合に(あるいは私が物理法則にしがたう場合に)、「従う」という意味が意味するのは、奴隷がすることとは異なります。この二つの意味は、創発レベルの異なる出来事を説明しています。

古代ローマ数字には、通説には反して、かなり効率的なかけ算や割り算の方法もありました。そのため、XX個の木箱を積んだ船があり、それぞれの木箱には瓶がV列 × VII列に並べてあれば、時間のかかる計算作業を行わなくても、この船には合計でÐCC個の瓶があると計算できました。また、ÐCCがÐCCIよりも小さいことは一目でわかります。したがって、数の操作を、画線法や計数作業と切り離して行うことにより、価格や給料、税金、金利などの計算に使うことも可能になりました。それと同時に、将来の進歩に道を開く、概念の上での前進だったとも言えます。しかし、そうしたより高度な作業をするには、ローマ数字による記数法は普遍的ではありませんでした。ↀ(1000)よりも大きな値を表す記号がなかったので、2000以降の数字はすべて、先頭にↀがいくつも並ぶことになりました。そうするとこうした記号の列は、1000という単位でのタリーマークにすぎなくなります。

画線法を使わずに算術計算を行う唯一の方法は、普遍的なリーチをもつルールを用いることです。アルファベットと同じように、基本的なルールと記号が少数あれば十分です。現在一般的に使われている普遍的な記数法には、0から9という10個の数字があります。それが普遍的だとされるのは、ある数字の値は、その数のなかでの位置(位)によって決まるというルールがあるためです。たとえば、2という数字を単独で書いた場合には2を意味しますが、204という数のなかでは200を意味します。そうした「位取り」記数法には、「プレースホルダー」が必要になります。たとえば、204の0はプレースホルダーで、2という数字を、200を意味する位に置くという機能しかありません。

この位取り記数法はインドが起源とされていますが、いつ始まったのかは知られていません。それは遅くとも9世紀のことだと考えられます。この記数法が、科学や数学や工学、貿易の分野において非常に大きな可能性を持っていたことは、あまり広く理解されていませんでした。位取り記数法がアラブの学者に採用されたのはほぼこの時期でしたが、アラブ世界で一般的に使われるようになったのは、それから千年後のことです。普遍的なものへの熱意がこのように欠けているのは不思議ですが、そうした状況は中世ヨーロッパでも繰り返されました。ヨーロッパでも少数の学者が、10世紀にはインド生まれの数字をアラブ経由で採用していますが(その結果、「アラビア数字」という誤った名称がついた)、やはり、その数字が日常的に使われるようになったのは、数世紀後のことでした。

一方、古代バビロニア人は、紀元前1900年にはすでに、事実上普遍的な記数法にあたるものを発明していましたが、彼らもまた、その記数法の普遍性に関心がないばかりか、気づいてさえもいませんでした。それは位取り記数法でしたが、インドで考案された記数法と比べると、非常に扱いにくいものでした。それには「数字」が59個ありました。その数字はそれ自体が、ローマ数字のような記数法で書かれていました。古代バビロニアの記数法には、ゼロにあたる記号もなかったので、空白がプレースホルダーとして使われていました。連続するゼロを表す方法も、小数点に当たる記号もありませんでした(つまり、私たちの記数法で200、20、2、0.2にあたる数を書くと、すべて2になり、それらを区別するには文脈で判断するしかありませんでした)。これらから、この記数法は普遍性を主な目的としてつくられてはいなかったこと、そして普遍性が得られた場合でも、大きな評価を得られなかったことが示唆されます。

このような繰り返し起こる奇妙な性質を深く理解するには、紀元前3世紀にあった、古代ギリシャの科学者・数学者のアルキメデスが登場する有名なエピソードを考えると良いかもしれません。アルキメデスは、天文学純粋数学を研究するうえで、非常に大きな数を計算する必要が出たため、独自の記数法を発明しなければなりませんでした。アルキメデスが出発点としたのは、慣れ親しんでいた古代ギリシャの記数法でした。これは古代ローマの記数法に似ていますが、最高値を表す記号はM(10000)でした。古代ギリシャの記数法の範囲は、Mの上に書いた数字は1万倍されるというルールを採用することによって、すでに拡張されていました。たとえば、20を表す記号はΚ、4を表す記号はδだったので、24万は\overset{{\delta}{\kappa}}{M}と書けます。

たとえば、\overset{\overset{{\delta}{\kappa}}{M}}{M}が24億を意味するように、何段もある数字をつくり出せるようなルールにしてさえいれば、古代ギリシャの記数法は普遍性をもつようになっていたでしょう。しかしギリシャ人はそうしたルールを採用しなかったようです。さらに驚くべきことに、アルキメデスも採用しませんでした。彼の記数法では違ったアイデアを用いています。それは現代の「科学的記数法」(200万を{2\times10}^{6}と書く方法)に似ていましたが、10のべき乗の代わりに、1億のべき乗を使っていました。しかしアルキメデスはさらに、指数は既存のギリシャ数字でなければならないと定めました。つまり、その指数は1億をなかなか超えないということです。したがって、私たちの記数法での{10}^{800,000,000}より大きくなると、この方法はうまくいかなくなりました。アルキメデスは、指数についてのルールさえ追加していなければ、いたずらに手間はかかるけれども普遍的な記数法を手にしていたはずです。

現在でも{10}^{800,000,000}より大きな数を必要とするのは数学者くらいなものですし、それもめったにないことです。しかしアルキメデスが制約を課したのは、このことが理由とは考えられません。数という概念を探る中で、アルキメデスはその記数法をさらに拡張しましたが、今度は{10}^{800,000,000}の累乗を使うという、いっそう手に負えない記数法が生まれました。しかしこのときも、指数が800,000,000未満になるようにしたため、 10^{6.4\times10^{17}} より上のどこかに、恣意的な上限を置いたのです。

なぜでしょうか? 現在考えると、アルキメデスが自らの記数法に、どの位置でどの記号を使ってよいかということに制約を付けたのは、非常に筋が悪いように思えます。そういった制約に数学的な正当性はありません。恣意的な制約なしに自分のルールを適用できるようにするつもりがアルキメデスにあったのなら、その恣意的な制約を既存のギリシャの記数法から取り去るだけで、ずっと優れた普遍的な記数法を発明することができたのです。数年後、数学者のアポロニウスも別の記数法を発明しましたが、同じ理由で、普遍性を得られずに終わりました。それはまるで、古代の人々がみな、普遍性を意図的に避けていたかのようです。

啓蒙運動によって普遍性自体が望ましいものとされるようになった

アルキメデスやアポロニウスはインドで考案されたような記数法を本当に思いつかなかったのでしょうか? あるいはそれを避けることを選んだのでしょうか? アルキメデスは、自分が使った記数法拡張の手法(二回連続で使った手法)ならば、無制限に拡張していけることに気づいていたはずです。しかしアルキメデスは、結果として生じる数字が、正当に論ずることのできるものについて言及するとは思えなかったのかもしれません。実際、そのとき彼が取り組んでいた仕事の目的の一つは、海辺にある砂粒を本当に数えることはできないというアイデアを否定することでした(当時はこのアイデアは自明の理とされていました)。そのため、アルキメデスは自分の記数法を使い、全天球を満たすのに必要な砂粒の数を計算しています。このことが示すのは、アルキメデスだけでなく、古代ギリシャ文化では一般に、抽象的な数という概念がまったくなかった可能性があり、そのため、彼らにとって、数とは物体(想像の物体であっても)のみを指すものだったということです。それならば、普遍性を漠然とでも理解するのは難しかったでしょうし、ましてそれを目指すことなどあり得なかったでしょう。あるいはアルキメデスは、説得力のある話をするためには、無限という概念を下げる必要があると考えていただけかもしれません。いずれにしても、私たちの視点からみれば、アルキメデスの記数法は普遍性への飛躍を繰り返し「試みて」いたのですが、アルキメデスは記数法にそうしてほしくなかったようです。

さらにもっと純理論的な面の話だった可能性もあります。普遍性はすべて、どんな偏狭な問題の解決を目指していたかということを超越して、さらなる技術革新に役立つことから最大の利益を得ます。そして技術革新は予測不可能です。そのため、普遍性が発見された時点でそれを正しく認識するには、抽象的な知識自体を評価するか、普遍性には予測不可能なメリットがあることを期待するか、いずれかが必要です。変化をほとんど経験していない社会であれば、どちらの態度もかなり不自然に思えるでしょう。しかし啓蒙運動のなかではそれは逆転しました。啓蒙運動の典型的な考え方とは、既に述べたように、進歩は望ましく、かつ達成可能というものです。したがって、普遍性についても同じように考えられたのです。

啓蒙運動では、偏狭思考や、あらゆる恣意的な例外や制限は、本質的に問題があると見なされるようになりました。そしてそれは科学の世界にとどまりませんでした。法律が貴族に対して、平民とは異なる扱いをするのはなぜでしょうか? 奴隷と主人、女性と男性の扱いが違うのはなぜでしょうか? ジョン・ロックなどの啓蒙運動の哲学者たちは、政治制度を恣意的なルールや前提から開放することに乗り出しています。ほかの人々は、道徳的な格言を、自明のこととして独断的に主張するのではなく、普遍的な道徳的説明から導こうとしました。このようにして、正義や合法性、道徳についての普遍的な説明的理論が、物質や運動についての普遍的理論と並行して存在するようになりました。こうしたケースのすべてで、普遍性は、偏狭な問題を解決する手段としてだけでなく、それ自体が望ましい機能として(さらには、あるアイデアが真であるために必要な機能として)、意図的に追求されたのです。

コンピューター

普遍性への飛躍の一つで、啓蒙運動初期に重要な役割を果たしたのは、「活版印刷術」の発明でした。活版印刷で用いた可動式の活字は、金属製の部品からなっていて、その一つずつにアルファベットの一文字が浮き彫りしてあった。それ以前の印刷技術は、文書の各ページが一枚の印刷版に掘ってあり、その印刷板上のあらゆる記号を一回の作業で複写できるというものでした。それは字を書くことを単に効率化しただけであり、ローマ数字が画線法を効率化したのと変わりませんでした。しかし、それぞれの文字が何個かある可動式の活字が用意されていれば、それ以上金属板を掘る作業は必要ありません。活字を組んで単語や文章にするだけでよいのです。活字を製造するのに、その活字を使って最終的に印刷される文書の内容を理解している必要はありません。活字とは、普遍的なのです。

とはいえ、活版印刷が中国で11世紀に発明されたときには、さほど大きな変化はもたらしませんでした。よくあるように普遍性への関心がかけていたからかもしれません。あるいは中国の書記体系では数多くの象形文字を使っていたので、普遍的な印刷方式を生み出す直接的なメリットがなかったのかもしれません。しかし活版印刷は、15世紀のヨーロッパにおいて、印刷事業を行っていたヨハネス・グーテンベルグによって再発明されると、さらなる進歩を次々に引き起こすようになりました。

ここで見られるのは、普遍性への飛躍に特有の変化です。つまり飛躍の前には、それぞれの文書を印刷するたびに専用の物体をつくる必要がありますが、飛躍の後では、普遍的な物体(この場合には、可動式の活字を備えた印刷機)を必要に応じて調整する(あるいは特殊な目的に特化させたり、プログラムしたりする)ようになるということです。同じように、1801年にジョセフ・マリー・ジャカール(Joseph Marie Jacquard, 1752-1834)は、「ジャカード織機」として知られる万能絹織機を発明しています。ジャカード織機では、模様のある絹地を織る場合、生地一反ごとに一列ずつ手作業で操作する代わりに、パンチカードに任意の模様をプログラムし、その指示によって織機がその模様を何回も織ることができるようになっています。

こうしたテクノロジーとして最も重要なのが、「コンピューター」です。現在、あらゆるテクノロジーがコンピューターに頼る割合は増えています。またコンピューターには、理論や哲学の面での深い意味があります。計算の普遍性への飛躍は1820年代に起こっているはずでした。このころ、数学者のチャールズ・バベッジ(Charles Babbage, 1791-1871)は、自ら「階差機関(difference engine)」と呼ぶ装置を設計しました。これは機械式の計算機で、10通りのかみ合わせがある歯車によって十進数を表すようになっています。バベッジが階差機関を設計した本来の目的は、対数や余弦といった数学関数の表を自動生成するという、偏狭なものでした。そうした関数量は航海術や工学で良く使われていましたが、当時は「計算者(computer)」(これがコンピューターの語源)と呼ばれる大勢の作業者によって編集されていたため、誤りが非常に発生しやすい状況でした。階差機関では、算術規則が金属部品に組み込まれているため、誤りはほとんど発生しません。階差機関で任意の関数表を印刷するには、その関数の定義を簡単な演算の形で一度だけ階差機関にプログラムすればよいのです。

残念ながら、バベッジ自身と英国政府が大金を投じたにもかかわらず、バベッジはプロジェクトの運営が下手だったため、階差機関の発明にはついに成功しませんでした。

バベッジの階差機関1号機設計図

しかしバベッジの設計はしっかりしていたので(いくつか細かい間違いはありましたが)、1991年にエンジニアのドロン・スウェード(Doron Swade,1946-)が率いるチームが、この階差機関をバベッジの時代に実現不可能だった加工精度で組み立て、ロンドン科学博物館で実際に動かすことに成功しています。

バベッジの階差機関2号機

現在のコンピューターはもちろん、電卓の基準から見ても、階差機関に可能な計算の種類は非常に限られていました。しかし、とにかくそれが存在しえる根拠は、物理学や航海術、工学で使われるあらゆる数学関数には、規則性があるからです。こうした関数は「解析関数」として知られており、1710年に数学者のブルック・テイラー(Brook Taylor,1685-1731)は、解析関数がすべて、加算と積算の繰り返しだけを使って、恣意的に近似可能であることを発見しています。解析機関が行うのはそうした演算です。したがってバベッジは、それ以前は表を作成する必要があった一握りの関数を計算するという偏狭な問題を解くために、解析関数の計算用の普遍的な計算機をつくり出したのだと言えます。バベッジの階差機関に搭載された、タイプライターに似た印刷装置では、活版印刷という普遍的なテクノロジーも活用していました。それがなければ、表を印刷するプロセスを完全に自動化することはできなかったのです。

バベッジにはもともと、計算の普遍性という概念はありませんでした。それでも階差機関はすでに、その可能な計算の種類ではなく物理的構成の面で、普遍性にかなり近づいています。任意の表を印刷するように階差機関をプログラムするためには、特定の歯車を初期化します。バベッジはやがて、このプログラム作業自体を自動化できることに気づきました。ジャガード織機のように、歯車の設定をパンチカードとして準備して、歯車に機械的に転送すればよいのです。これによって、残存していた誤りの主な要因がなくなるだけではなく、その機械で可能な計算の種類も広がることになります。バベッジはその後、機械が後の計算で使う新しいパンチカードを自ら作成して、準備済みパンチカードのどれを次に読み込むかを制御できれば(つまり、歯車の位置に応じて、パンチカードの山から次に読み込むカードを選べば)、何か質的に新しいことが起こるだろうと気づきました。それが普遍性への飛躍です。

バベッジは、この改良版の機械を「解析機関(analytical engine)」と呼びました。解析機関には、人間の「計算者」にできる計算はすべて行えるということ、それには単なる算術以上のものが含まれていることを、バベッジと同僚の数学者であるラブレース伯爵夫人エイダ(Ada Lovelace,1815-1852)は理解していました。解析機関には、代数やチェス、作曲、画像の処理などが可能だったのです。それは、今では普遍的古典コンピューターと呼ばれているものにあたります(「古典」というただし書きの意味については第11章で、さらに高レベルの普遍性で動く、量子コンピューターについて議論する際に説明します)。

バベッジたちも、そしてその後100年以上は他の誰も、コンピューターの最も一般的な用途が、現在のように、インターネットや文書作成、データベース検索、ゲームになるとは想像しませんでした。しかしバベッジはもう一つの重要な用途として、コンピューターが科学的予測に使われるようになると見越していました。解析機関は、ユニバーサル・シミュレーターになるだろうと考えられました。つまり、関連する物理法則を与えれば、どんな物理的対象の振る舞いでも望みの精度で予測できるということです。これは、私が第3章で触れた普遍性です。そうした普遍性を介して考えれば、互いに似ておらず、異なる物理法則に支配されている物理的対象(たとえば脳とクエーサーなど)は、同じ数学的関係を示すことがありえます。

バベッジラブレースは、啓蒙運動の時代の人々だったので、解析機関に備わっている普遍性は、その装置を画期的なテクノロジーにするだろうと理解していました。それでも彼らは、熱心に取り組みはしましたが、自分たちの熱意の対象を一握りの人々に伝えただけで、より多くの人々に伝えられませんでした。それを伝えられた人々も、さらに別の人々に伝えることができませんでした。その結果、解析機関は、実現していたはずの悲劇的な技術の一つとして歴史に残ることになりました。バベッジらがほかの方法を求めて辺りを見回しさえすれば、継電器(電流によって制御されるスイッチ)という完璧なものがすでにあることに気づいたかもしれません。継電器は当時は電信という技術革命のために量産されようとしていました。継電器を使って解析機関を再設計していれば、バベッジの解析機関よりも高速で、安上がりに開発できる簡単なものが実現していたでしょう。そうなれば、コンピューターの革命は、実際よりも1世紀早く起こっていたかもしれませんでした。同時期に開発が進められていた、通信と印刷という技術によって、インターネット革命が後に続いたかもしれません。

人工知能

バベッジラブレースはまた、現在でも実現していない、普遍的コンピューターのある用途についても検討していました。それは「人工知能(AI)」です。人間の脳は、物理法則に従う物理的対象であり、また解析機関はユニバーサル・シミュレーターなので、人間が考えるのと同じ意味で、解析期間が考えるようにプログラムすることは可能でした(ただし速度は非常に遅く、また現実的でないほど大量のパンチカードが必要になります)。それにもかかわらず、バベッジラブレースはそうしたプログラミングができないと考えていました。ラブレースは、「解析期間には、何かを生み出そうとするところはない。それは、実行を命令する方法がわかっていることなら何でもできる。解析の道筋をたどることもできる。しかし、何らかの解析的関係や真実について予測する能力はない」と主張しています。

数学者でコンピューターのパイオニアであるアラン・チューリングAlan Turing,1912-1954)は後に、この誤りを「ラブレース伯爵夫人の反論」と呼んでいます。ラブレースが正しく評価できなかったのは、計算の普遍性ではなく、物理法則の普遍性でした。当時の科学には、脳の物理学に関する知識はほとんどありませんでした。また、ダーウィン進化論はまだ発表されていないころで、人間の本質を超自然的な面から説明することが一般的でした。現在、AIは達成不可能といまだに信じている科学者や哲学者は少数派ですが、彼らにとって気の休まる状況にはありません。たとえば、哲学者のジョン・サール(John Rogers Searle,1932-)は、AIプロジェクトを次のような歴史的視野のなかに位置付けています。

何世紀にもわたって、一部の人々は、それぞれの時代でもっとも複雑な機械をもとにしたメタファーを用いて、機械的な観点から心を説明しようとしてきた。最初は、脳は非常に複雑な歯車やレバーの集まりのようだと思われていた。その次は油圧菅で、次は蒸気機関、その次は電話交換機だとされた。コンピューターが人間にとって素晴らしいテクノロジーとなった今、脳はコンピューターであると言われている。しかし、これはまだメタファーにすぎず、脳は蒸気機関ではなくてコンピューターだと考えるべき理由はない。

とサールは言います。

しかし、そう考える理由はあるのです。蒸気機関はユニバーサル・シミューレーターではありません。しかしコンピューターはユニバーサル・シミュレーターです。そのため、ニューロンに可能なことはすべてコンピューターにも可能だと考えるのは、メタファーではありません。このことは、私たちが知る限りの物理法則の性質として、知られており、証明もされています(たまたまですが、油圧管や、歯車とレバーもー、バベッジが示したように、普遍的古典コンピューターになることができます)。

皮肉なことに、「ラブレース伯爵夫人の反論」は、還元主義についてのダグラス・ホフスタッターの主張(第5章を参照)とほとんど同じ論理です(ただし、ホフスタッターは、AIの可能性の最も熱心な支持者の一人です)。それは、二人がともに、低レベルの計算ステップを積み重ねて、あらゆるものに影響を与える高レベルの「私」にすることは不可能だという、誤った前提に立っているからです。しかし、二人が違っているのは、その誤った前提が提示するジレンマにおいて、正反対の立場を選んでいることです。ラブレース伯爵夫人が選んだのは、そのような「私」は存在しえないという誤った結論です。

普遍的古典コンピューターの誕生 

1936年に、チューリングは普遍的古典コンピューターに関する、権威ある理論を構築しました。チューリングが目指したのは、そうしたコンピューターの開発ではなく、数学的証明の性質を研究するために、その理論を抽象的に使うことだけでした。数年後に、最初の普遍的コンピューターが開発された時も、普遍性を実現しようという特別な意図はありませんでした。そのコンピューターは、第二次世界大戦中の特殊な軍事利用を目的として、英国と米国で開発されています。英国で開発された「コロッサス」コンピューター(チューリングも関与しています)は、暗号解読のために使われました。一方、米国のコンピューター「ENIAC」は、大砲の軌道計算に必要な方程式を解くために設計されています。この二つのコンピューターで使われているのは、真空管というテクノロジーでした。真空管は継電器のような機能を備えていましたが、速度は数百倍速いのです。同じころドイツでも、技術者のコントラート・ツーゼ(Konrad Zuse,1910-1995)が、継電器不要のプログラム可能な計算機を開発しています(それはバベッジが開発するはずだったものです)。この三つのマシンはどれも、普遍的コンピューターとなるのに必要な技術的特徴は備えていましたが、どれも普遍的コンピューターになるように構成されてはいませんでした。結局、コロッサスは暗号解読以外の用途で使われることなく、戦争が集結すると、ほとんど解体されてしまいました。ツーゼのマシンは連合国軍の爆撃によって破壊されました。しかしENIACは、普遍性への飛躍を許されています。戦後、ENIACは天気予報や水爆開発プロジェクトなど、本来の目的とは異なるさまざまな用途に使われたのです。

第二次世界大戦以降のエレクロトニクス技術の歴史は、より極小のスイッチを各装置に実装することによる、小型化が中心になってきました。こうした改良が、1970年ころの普遍性への飛躍につながります。このころ、いくつかの企業が別々に、マイクロプロセッサを開発しました。マイクロプロセッサは一個のシリコンチップの上に構築された普遍的古典コンピューターです。以降、あらゆる情報処理装置の設計は、マイクロプロセッサからスタートして、次にその装置に求められている特別な作業を行えるようにマイクロプロセッサを個別に修正する(つまりプログラムする)という手順で行えるようになりました。現在では、あなたの洗濯機に入っているコンピューターも、適当な入出力装置と、必要なデータを保持するのに十分なメモリ容量さえ与えられれば、洗濯ではなく、天文学計算や文書作成が行えるようにプログラム可能です。

そういった意味では(つまり、計算速度やメモリ容量、入出力装置の問題を無視すれば)、かつての人間の「計算者」から、たくさんの付属装置を備えた蒸気駆動型の解析機関、そして部屋くらいの大きさの第二次世界大戦中の真空管式コンピューター、そして現在のスーパーコンピューターまでのすべてが、計算というまったく同じ機能をもっているのは、注目に値する事実です。

 

普遍コンピューターへの飛躍の条件

こうしたマシンにもう一つ共通していたのは、すべて「デジタル」であることです。それらは、オン/オフに切り替わる電子スイッチや、10通りのなかの一つの位置を取る歯車といった、離散値を取る物理変数という形の情報にもとづいて動作しています。デジタルでないのが、計算尺のような「アナログ・コンピューター」で、これは連続的な物理変数という形式の情報を表しており、かつてはどこにでもありましたが、今ではほとんど使われていません。それは、最新のデジタル・コンピューターをプログラムすれば、あらゆるアナログ・コンピューターと同じことができるし、ほぼどんな用途でも、アナログ・コンピューターよりも優れた性能を発揮できるからです。デジタル・コンピューターにおける普遍性への飛躍によって、アナログ式の計算は取り残されたのです。それは避けられないことでした。万能アナログ・コンピューターなるものはないからです。

ユニバーサル・アナログ・コンピューターが存在しないのは、「誤差修正」が必要とされるからです。アナログ・コンピューターでは、部品の組み立て方が不適切だったり、熱変動や、ランダムな外的影響が発生したりすることから、長い時間をかけて計算するあいだに、意図していた計算経路からそれてしまいます。誤差修正が行われなければ、あらゆる情報処理プロセスは必然的に制限されます。つまり、あらゆる知識創造が制限されるということです。誤差修正は無限の始まりなのです。アナログの計算、たとえばひもを使った計算を考えます。長さの比較やひもの複製といった操作では、その操作自体が有限の精度でしか行えないので、各ステップで誤差が蓄積する確率を、その精度のレベル以下に減らすことはできません。そのため、連続して操作できる回数には、それを超えると結果が所定の目的にとって役に立たなくなる上限が課せられるのです。アナログ計算が決して普遍的にならないのはこのためです。

必要とされるのは、誤差が生じるのは当然としつつ、生じればすぐに修正するシステムです。これは情報処理の創発性の最も低いレベルにある、「問題は避けられないが、解決できる」という考え方です。しかしアナログ計算では、誤差修正は、誤りのある値と正確な値を即座に区別できないという、基本的な論理的問題にぶつかります。それは、アナログ計算の性質として、あらゆる値が正しい可能性があるからです。ひもの長さはどれも正しい長さかもしれないのです。

一方、整数だけで行う計算はそうではありません。同じひもを使って、整数を、インチ単位の整数の値を取るひもの長さとして表すことができます。計算のステップが一つ終わるごとに、結果として得られたひもを切るか、長くするかして、一番近いインチ数にすれば良いのです。そうすれば誤差は蓄積されることはありません。たとえば、測定をすべて、10分の1インチの許容誤差で行えたとします。これなら各ステップが終わるごとに、あらゆる誤差が検出され、除去されます。そのため、連続して行う計算ステップの回数に上限が課せられることはないのです。

したがって、普遍的コンピューターはすべてデジタルだと言えます。そしてすべての普遍的コンピューターが、私がたった今説明した方法と基本的な倫理の点では変わらない誤差修正の方法を用いています。たとえば、バベッジのコンピューターでは、歯車が取る角度の連続体全体に対して、10の異なる意味のみを割り当てています。角度をそのようにデジタルで表すことで、歯車が自動的に誤差修正を実行することが可能になります。各ステップの後で、歯車の角度がその10の理想的な位置からわずかでもずれていれば、すぐに一番近い位置へと修正されて、歯車はかちりとおさまります。角度の連続体全体に意味を割り当てれば、名目上は、それぞれの歯車が(非常に)多くの情報を運ぶことが可能になるでしょう。しかし実際には、確実な形で取り出せない情報は保存されないのです。

デジタルは普遍性の条件だ

幸いなことに、処理される情報はデジタルでなければならないという制約によって、デジタル・コンピューターや、物理法則の普遍性が損なわれることはありません。ヤギの群れの長さをインチ単位の整数で測定するのが特定の用途には不十分なら、10分の1インチ単位や、10億分の1インチ単位の整数を使えば良いのです。このことは、ほかのすべての用途にも言えます。物理法則では、あらゆる物理的対象(あらゆる他のコンピューターを含む)の振る舞いは、万能デジタル・コンピューターを使えば、任意の精度でシミュレーションできることになります。それは、連続的に変化する数を、十分に細かい、離散的な数のグリッドで近似するということです。誤差修正の必要性があるため、普遍性への飛躍はすべて、デジタル・システムで起こります。話し言葉で単語を構築している基本音声の数が有限なのはそのためです。発話がアナログだったら理解できないでしょう。誰かが言ったことを繰り返すことも、記憶することもできません。したがって、書記体系が声のトーンなどのアナログ情報を完璧に表現することができないのは問題ではありません。声のトーンを完璧に表現できるものはないのです。同じ理由で、音声そのものも、有限の数の意味しか表すことができません。たとえば、人間は約7通りの音量しか聞き分けられません。標準的な記譜法はその点をほぼ反映しており、音の大きさを表す記号(p,mp,fなど)はおよそ7種類あります。そして、話し手が一回の発声で、有限の数の意味しか意図できないのも同じ理由によります。

 

遺伝暗号

こうしたさまざまな普遍性への飛躍のすべては、印象的なつながりがもう一つあります。それは、そうした普遍性への飛躍がすべて地球上で起こったことです。実際に、すでに知られている普遍性への飛躍はどれも、人間のもとで生じています。ただし、例外が一つあります。それは私がまだ言及していないもので、歴史的にみれば、ほかの普遍性への飛躍はすべてこの飛躍から生じています。それは、生命進化の初期に起こった普遍性への飛躍です。

現在の生物にある遺伝子は、複雑でかなり間接的な化学的経路によって、自らを複製しています。多くの種では、遺伝子は、それとよく似た分子RNAをいくつも生成するためのひな型として機能します。次にこのRNAは、身体を構成する化学物質、特に触媒になる酵素の合成を指示するプログラムとして機能します。触媒はある種のコンストラクターです。ほかの化学物質のあいだの変化を促進しますが、それ自体は変化しないからです。こうした触媒は、生物の化学物質の生成・調整機能のすべてを制御することで、生物自体を特徴づけています。きわめて重要なのは、ここにDNAの複製をつくるプロセスが含まれることです。これほど入り組んだメカニズムがどう進化したのかという問題はここでは重要ではありませんが、話をはっきりさせるために、一つの可能性を簡単に説明します。

今から約40億年前、地球の表面が十分に冷えて、液体の水が十分凝縮できるようになったばかりのころ、海は、火山や隕石落下の衝撃、暴風雨、そして現在よりも強い潮汐作用(月との距離が近かったから)によってかき混ぜられていました。同時に、化学的にも非常に活性の高い状態にあり、多くの種類の分子がつぎつぎと形成されたり、変換されたりしていました。この反応は自然に生じる場合もあれば、触媒によって引き起こされる場合もありました。そうした触媒の一つが突然、それ自体を形成しているものとまったく同じ種類の分子の形成に触媒作用を及ぼしました。その触媒は生きてはいませんでしたが、生命の最初の兆しだったと言えます。

それは、対象を限って作用する触媒にはまだ進化していなかったので、それ自体の変種も含む、ほかの化学物質の生成も加速させました。そのなかで、ほかの化学物質と比較して、自らの生成の促進(および自らの破壊の抑制)に最も優れていた化学物質の数が多くなっていきました。これらの化学物質は同時に、自らの変種の構築も促進し、進化が続いていきました。

しだいに、そうした触媒がもつそれ自身の生成を促進する能力は、十分しっかりとして明確なものになり、自己複製子と呼べるほどになりました。自身をより素早く確実に複製されるようにする自己複製子が、進化によって生まれたのです。

さまざまな自己複製子はグループとなり、それぞれが複雑に絡み合う化学反応の一部分を引き起こすのに特化することによって、協力し合うようになりました。そして、化学反応の正味の結果として、そのグループ全体の複製がより多く構築されるようになりました。このようなグループは、初期段階の生物だと言えます。その時点での生命は、普遍的でない印刷技術や、ローマ数字とだいたい同じような段階にありました。もはやそれぞれが個別に自己複製する段階ではありませんでしたが、調整やプログラミングによって特定の物質を生成する普遍的なシステムはまだ存在していませんでした。

最も成功した自己複製子は、RNA分子だったかもしれません。RNA分子には、その構成分子(「塩基」とも言い、DNAの塩基と同じ)の細かな配列によって決まる、独自の触媒活性があります。結果として、複製プロセスは単純な触媒反応ではなくなり、プログラミングに近くなっていきました。それは、塩基をアルファベットとして使う言語、つまり遺伝子を使ったプログラミングです。

遺伝子は遺伝暗号の説明書と解釈可能な自己複製子です。一方、ゲノムは遺伝子のグループで、互いに依存して複製を行います。ゲノムを複製するプロセスが、生物にあたると考えられます。したがって遺伝暗号は生物を指定する言語でもあります。ある時点でこのシステムは、DNAでできた自己複製子へと切り替わりました。DNAはRNAよりも安定的で、大量の情報を保存するのに適しています。

次に起こった出来事は広く知られているので、それがどれほど珍しく、不可解であるかはわかりにくいこともあります。当初は、遺伝暗号と、それを解釈するメカニズムの両方が、生物にあるほかのあらゆるものと並行して進化していました。しかしある瞬間から、遺伝暗号は進化をやめましたが、システムは進化し続けました。その時点で、このシステムは原始的な単細胞生物よりも複雑なものはコードしていません。しかし実施的には、それに続く地球上のあらゆる生物は、今日まで、DNA複製子を基盤としてきただけでなく、まったく同じ塩基のアルファベットを使ってきました。こうした塩基は、三つの塩基からなる「単語」にグループ化されており、その「単語」の意味にはわずかな違いしかありません。

つまり、生物を指定する言語と考えられる遺伝暗号は、現象的なリーチを示してきたことになります。遺伝暗号は進化した結果、神経系もなく、動いたり、力を加えたりする能力もなく、内臓や感覚器官もなく、生活様式と言っても自らの構成要素を合成して、二つに分裂するだけの生物を規定しただけでした。しかし、現在ではその同じ言語が、そうした生物とは似たところのない無数の多細胞生物による、走る、飛ぶ、呼吸する、交尾する、捕食者や獲物を識別するといった振る舞いのためのハードウェアやソフトウェアを規定しています。また、羽根や歯といった工学的構造や、免疫系などのナノテクノロジー、さらにはクエーサーを説明したり、ほかの生物をゼロから設計したり、自らが存在する理由について思いをめぐらすような脳でさえも、その言語によって規定されています。

遺伝暗号は、その進化全体を通じて、はるかに狭いリーチを示していました。もしかすると、遺伝暗号の一種の変種のそれぞれが、互いに良く似た、ごくわずかの種だけを規定するために用いられたのかもしれません。いずれにしても、新しい知識を具現化した種が、遺伝暗号の新たな変種によって規定されるということは、良く起こることだったに違いありません。しかしその次に、非常に大きなリーチを獲得した時点で、進化は止まりました。なぜでしょうか? それは、何らかの普遍性への飛躍のように思えないでしょうか?

次に起こったことは、普遍性についてのほかの話で説明した、同じ悲しむべきパターンをたどっています。そのシステムは、普遍性に到達して、進化をやめた後の数十億年以上のあいだ、相変わらず細菌をつくるためだけに使われていたのです。つまり、今考えればそのシステムにあったことがわかるリーチが、先行する非生物からの進化に要した期間よりも長い年月にわたり、使われないままだったのです。仮に地球外知的生命体がその数十億年間のいずれかの時点で地球を訪れていたら、遺伝暗号にはそれが最初に登場した時に指定した生物とは大幅に異なる何かを指定できるという証拠は、まったく見当たらなかったでしょう。

リーチにはいつでも説明があります。しかしこの場合は、私が知る限り、説明はまだ見つかっていません。リーチにおける飛躍の理由が、それが普遍性への飛躍であるということだったら、普遍性とはいったい何だったのかということになります。遺伝暗号は、生命体を規定することについては普遍的ではないのかもしれません。遺伝暗号は、タンパク質といった特定種類の化学物質に依存しているからです。遺伝暗号はユニバーサル・コンストラクターなのでしょうか? そうかもしれません。それは、骨のなかのリン酸カルシウムや、ハトの脳のナビゲーション・システムに使われている磁鉄鉱のように、無機質でも何とか構築できる場合があります。生物工学の研究者はすでにそれを使って、海水から水素を製造し、ウランを抽出しています。遺伝暗号はまた、鳥が巣をつくったり、ビーバーがダムを建設したりするように、生物がその身体の外で建設作業を行うようにプログラムすることもできます。原子力宇宙船の建設がライフサイクルに含まれる生物を、遺伝暗号という形で規定することができるかもしれません。あるいは不可能かもしれません。私は、遺伝暗号の普遍性はやや劣ったもので、まだ十分に理解されていないのではないかと考えています。

1994年、コンピューター科学者で分子生物学者のレオナルド・エーデルマン(Leonard Max Adleman,1945-)は、DNAと、いくつかの簡単な酵素からできたコンピューターを設計して開発し、それがかなり複雑な計算をいくつか行えることを示しました。当時、エーデルマンのDNAコンピューターは世界最速のコンピューターとされていました。さらに、普遍的古典コンピューターを同じ方法で作れることも明らかでした。したがって、DNAシステムのほかの普遍性がどうだったにせよ、計算の普遍性もまた、エーデルマンが使うまで、何十億年間も使われることなく、DNAシステムのなかに内在していたのだとわかります。

コンストラクターとしてのDNAがもつ、この不可思議な普遍性は、実在したはじめての普遍性だった可能性があります。しかし、そうしたさまざまな形の普遍性のなかで、物理的に最も重要なのは人々がもつ特徴的な普遍性です。つまり、人々をユニバーサル・エクスプレイナーにもしているのです。普遍性の効果は、すでに説明したように、基本的説明のすべてを用いることによってのみ説明可能です。それは、その偏狭な起源を超越することのできる唯一の普遍性でもあります。普遍的コンピューターは、エネルギーを供給し、メンテナスを行う人々が永久に存在しない限り、本当に普遍的にはなりえません。そしてほかのあらゆるテクノロジーにも同じことが言えます。人間が違った決断をしない限り、地球上の生命も最終的には消え去るでしょう。人々だけが、無限の未来において、自らを頼りとできるのです。

 

用語解説

普遍性への飛躍(The jump to university):急激で大幅な機能の向上を経験するために徐々にシステムを向上させ、ある領域で普遍的なものになる傾向。

____________________________

書評

普遍性は、本書で何度も出てくる重要なキーワードです。社会システムや道徳に普遍性を求めるのは、啓蒙運動を経て十分に現代社会に慣れ親しんだ私たちにとっては当たり前ですが、それより以前、まして古代ローマ時代などに遡れば、それは自然ではなかったという指摘には膝を打ちます。数や文字、大戦期に偏狭な目的で作られたコンピューターは、どれも普遍性を持っていたにも関わらず、「人間が制限した」ためにその大半は普遍性を達成できなかった、という関係の理解も面白いと思います。私たちの身の回りで、私たちが偏狭な思考のために普遍性を制約しているものがある可能性に気付かされました。

原子力宇宙船の建設がライフサイクルに含まれる生物を規定することができるか、という問いも面白いです。そこまで極端な例を考えることで、遺伝子は普遍的かという問いに答えようとしているわけです。また、そうした限界を突き詰めた生物の可能性を考えると、遺伝子操作によって人間に必要な生物を作り出す程度のことは何ら重要な倫理的問題は無いのでは無いかと思えてきます。そこで、第3章で、ドイチュは「人間に関して一意的に重要なものは、新しい説明を生み出す能力だけ」と断言していたことを思い返します。この普遍性への飛躍を遂げたものは、宇宙のどこに由来するものであれ、人間の条件を満たしているわけです。

 

 

参考

Interview with Doron Swade MBE https://archivesit.org.uk/interviews/doron-swade-mbe/

『無限の始まり』第5章「抽象概念とは何か」

『無限の始まり』全体目次 第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

 

抽象とは何か、と質問されて、うまく答えられる人は少ないと思います。そもそも抽象という概念自体が抽象的です。第5章「抽象概念とは何か」(原題:抽象化の真実)では物理学者が自然法則を発見してきたプロセスや、ホフスタッターの「ドミノ計算機」の思考実験の例を見ながら、この厄介で面白い、「抽象」の意味に迫ります。

____________________________

 

創発性とは何か

日常の出来事は、基本物理学の観点から表すには途方もなく複雑なものです。たとえば、やかんに水を入れて火にかけたとします。そのやかんの中の水分子のすべての振る舞いを予測する方程式は、地球上のあらゆるスーパーコンピューターを宇宙の年齢と同じ期間だけ稼働させても、説くことができません。しかし幸い、こうした複雑さの一部分は、高レベルの単純さに形を変えます。たとえば、私たちは、水が沸騰するのにかかる時間をかなり正確に予測できます。その予測のためには、水の体積や熱源の出力といった、非常に簡単に測定できる物理量がいくつかわかればよいのです。さらに正確に予測するには、気泡の核形成が起こる場所の数や種類といった、より細かな性質を知る必要もあるかもしれません。しかし、そうした核形成などもやはり比較的「高レベルの」現象です。このように、水の流動性や、容器、熱源、沸騰や泡の関係を含めた、高レベルの現象のグループは、互いの関係の観点だけでうまく説明することができ、素粒子や原子レベルやそれより低いレベルのものを直接考える必要はありません。別の言い方をすれば、高レベルの現象全体の振る舞いは準自律的であり、ほとんど自己完結的だと言えます。このような、より高レベルでの説明可能性の変化は、「創発性」と呼ばれています。

還元主義は間違いだ

高レベルの物理量の振る舞いを構成しているのはその低レベルの振る舞いだけであり、それらの細かい点はほとんどが無視されています。このことから、創発性や説明についての誤った考え方が生まれ、広く行き渡ることになりました。それは「還元主義」と呼ばれており、科学はいつでも還元的な方法で、すなわち要素ごとに分析することによって、物事を説明し、予測するという説です。

科学が還元的に説明する場合も多いです。「原子間に働く引力はエネルギー保存の法則に従う」という事実を使うことによって、「熱の供給がなければやかんの水が沸騰しない」という高レベルの予測を行い、その予測を説明する場合などがそうです。しかし、還元主義では、レベルが異なる説明のあいだにいつでもそのような関係があることを求めていますが、多くの場合はそうなってはいません。前著『世界の究極理論は存在するか』では次のように書きました。

たとえば、ロンドンの議会広場に立っているサー・ウィンストン・チャーチルの像の鼻先にある特定の銅原子を考え、なぜその銅原子がそこにあるのか説明してみよう。それはチャーチルがその近くにある議会で首相を務めていたからである。そして彼のアイデアとリーダーシップが第二次世界大戦における連合軍の勝利に貢献したからであり、こうした人々を讃えるためにその像を建てる習わしがあるからだ。そして、その像の材料には銅を含む青銅が伝統的に使われるからだ。こうしてわれわれは、低レベルの物理的観察—ある特定の場所に銅原子が存在すること—を、アイデア、リーダーシップ、戦争、伝統のような、創発的な現象に関する極度に高レベルの理論を通して説明しようとする。

私がたった今示したもの以外に、その銅原子の存在を説明する低レベルの説明が、たとえ原理上にせよ、存在するはずだと考えなければならない理由はない。おそらく、還元主義的な「万物の理論」は、(たとえば)以前のある時点における太陽系の何らかの条件が与えられた場合、こうした銅像が存在する確率を原理上、低レベルで予測するだろう。しかし、こうした記述と予測(言うまでもなく不可能に近いことだが)は、何も予測しない。(…)こうした予測は、何よりもまず、たとえば第二次世界大戦とわれわれが呼んでいる複雑な運動に加わった、この惑星上のすべての原子にも言及しなければならないだろう。(…)あなたはその原子の配置とそれらの軌跡の何が、銅原子をこの場所に置く傾向をもたらしたのかを探求しなければならない。(…)

物理学においてさえ、いくつもの最も基本的な説明や、そこから得られる予測は、還元的ではありません。たとえば熱力学第二法則では、高レベルの物理プロセスはより無秩序な状態に進む傾向があるとされています。スクランブルエッグから、卵が泡立て器で溶く前の状態へと戻ることはありません。しかしスクランブルエッグをつくる過程を、何らかの方法で、個々の分子が確認できるほどの高解像度で動画撮影しておいてから、その動画を逆再生し、スクランブルエッグをつくる過程のあらゆる段階を分子スケールで詳しく調べられたとしたら、低レベルの物理法則に厳密に従って動いたり、衝突したりしている分子が見えるだけです。熱力学第二法則が、個々の原子についての記述からどのようにして導かれるのか、あるいは本当に導かれるのかどうかは、まだ明らかになっていません。(※コンストラクター理論はこの説明を試みているようです。)

熱力学第二法則が導かれると考えなければならない理由はありません。還元主義にはしばしば道徳的な含みがあります。(つまり「科学は基本的に還元的であるべきだ」ということ)。このことは、私が第1章と第3章で批判した、道具主義と平凡の原理の両方に関係しています。道具主義は、高レベルの説明のみを否定するのではなく、あらゆる説明を否定しようとしている点を除いては、還元主義にかなり似ています。一方、平凡の原理は、還元主義を穏やかな形にしたもので、人々が関係する高レベルの説明のみを否定しています。

道徳的な含みを持つ悪い哲学的教義には、還元主義の鏡像とでも言うべき「全体論(holism)」を追加できます。これは、唯一有効な説明(あるいは少なくとも、唯一意味のある説明)だけが、全体という観点からみた場合の部分に相当するという考え方です。

還元主義や全体論といった説はすべて、同じ理由から不合理だと言えます。つまりそういった説は、良い説明かどうかという点以外を根拠にして、理論の容認または拒絶を主張しているのです。高レベルの説明が低レベルの説明から論理的に得られる場合はいつでも、高レベルの説明は低レベルの説明について何らかの意味合いを含んでいます。従って、高レベルの理論が追加された場合、それらに一貫性があるならば、低レベルの理論のあり方に対する制約は増えます。つまり、存在する高レベルの説明のすべてが、一体となって、低レベルの説明のすべてを含意する可能性はあり、その逆も同じように言えるのです。あるいは、いくつかの低レベルや中レベル、高レベルの説明が、一体となって、あらゆる説明を含意することもありえます。私はそうなると考えています。したがって高レベルの説明のいくつかが、正確な自然法則だとわかれば、「微調整」の問題を最終的に解決する方法となりうるかもしれません。その微視的な結果は、微調整されているように思えるかもしれません。一つの候補は、計算の普遍性の原理ですが、これについては次の章で議論します。もう一つはテスト可能性の原理です。それは、物理法則が試験装置の存在を認めないような世界では、物理法則自体もテストが許されないからです。しかし、現在の形では、そうした物理法則と見なされる原理は人間中心的かつ恣意的であり、それゆえ、悪い説明ということになります。しかし、そうした原理が近似するような、より深遠な形の原理があるかもしれません。そういった原理は良い説明であり、熱力学第二法則のような微視的物理学の原理と十分に調和するでしょう。

科学の発見のメカニズムと創発性の関係

いずれにしても、創発的現象は世界の説明可能性にとってきわめて重要です。人間は、昔から経験則を使って自然をコントロールすることができました。経験則による説明が対象としていたのは、火や岩といった創発的現象に存在する高レベルの規則性でした。さらにはるか以前には、経験則をコード化しているのは遺伝子だけでしたが、そのなかの知識もやはり創発的現象についてのものでした。したがって、創発性はもう一つの「無限の始まり」だと言えます。あらゆる知識創発創発的現象に依存しており、また物理的に創発的現象で構成されているのです。

創発性はまた、発見は連続的な段階として行うことができ、そこに科学的手法が入り込む余地が生まれているという事実の原因でもあります。理論を向上させていく流れのなかで、それぞれの理論が部分的に成功することは、それぞれの理論がうまく説明する(あとで部分的に間違っているとわかるとしても)現象の「層」が存在することに等しいのです。

連続的に登場する科学的説明が、その予測を説明する方法では異なっていることがあります。予測自体が似ていたり、全く同一であるような領域でもそれはありえます。たとえば、アインシュタインAlbert Einstein,1879-1955)による惑星の運動の説明は、ニュートンIsaac Newton,1642-1727)による説明を単に修正するだけではありません。それはニュートンの説明の中心をなす重力や一様にすすむ時間といった要素を否定しています。同じように、ヨハネス・ケプラーJohannes Kepler,1571-1630)の理論では、惑星は楕円軌道上を動くとされていますが、これは単に天球説を修正しただけでなく、天球の存在自体を否定しています。さらにニュートンの説明は、ケプラーが考えた楕円軌道の代わりに別の形状を用いているのではありません。ニュートンが物理法則に持ち込んだのは、瞬間速度や加速度といった微小区間で定義される量によって、物体の運動を規定する方法でした。つまり、こうした惑星運動の理論は、どれもそれ以前の理論が用いていた惑星の運動を説明するための基本的な手段を無視したり、否定したりしたのです。

このことは、道具主義を支持する説として、以下のように用いられてきました。

連続的に登場する理論のそれぞれは、前の理論による予測に小さいながらも正確な修正を行うことから、その意味では前の理論より良い理論だと言える。しかしそれぞれの理論の説明は以前の理論の説明を一掃してしまうことを考えると、以前の理論の説明はそもそも正しくなかったことになる。そうなると、連続して登場するそうした説明が、実在についての知識を成長させていると見なすことはできない。ケプラーの理論では、軌道を説明するのに力は必要なかった。ニュートンの理論では、逆二乗則で表す力であらゆる軌道を説明している。そしてアインシュタインの説明では再び、力は必要とされなくなっている。では、ニュートンの「重力」は(その効果を予測したニュートンの方程式は別として)、どうして人間の知識の前進となり得たのだろうか?

重力が人間の知識を前進させることが可能であり、実際にそうしたのは、理論が説明を行う際に介在する実体を一掃することと、その説明全体を一掃することは同じではないからです。

アインシュタインの理論は、ニュートンによる逆二乗法則や重力の法則などの性質のすべてを支持しただけでなく、そのようになる説明も行っています。ニュートンの理論もそれ以前の理論より正確な予測を行えましたが、それは、実際に起こっている出来事について、以前の理論よりも正しかったからに他なりません。

それぞれの連続的議論によって後から得られる情報に照らしてみれば、以前の理論で予測が間違っていた場所がわかるだけではありません。以前の理論がどの部分について正しい予測を行っていようとも、その理由は、以前の理論が実在についてある程度の真実を表していたからだということもわかります。つまり、以前の理論が表していた真実は、新しい理論のなかで生き続けます。これをアインシュタインは次のように言っています。「いかなる物理学理論にとっても、より包括的な理論への道を示し、その理論のなかの限定的なケースとして生き続けることほど、晴れがましい運命はない('There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.')」

理論がもつ説明機能を最重要視することは、単なるつまらない好みの問題ではありません。科学がもつ予測機能は、理論の説明機能に完全に依存しています。また、あらゆる分野で進歩するには、予測ではなく、既存の理論における説明のほうを、次の新たな理論を推量するために独創的な形で変更する必要があります。さらに、一つの分野における説明は、ほかの分野についての私たちの理解に影響します。たとえば、奇術というのは奇術師の超自然的な能力が原因だと考える人がいた場合、その考え方は、そうした人々の宇宙論や心理学などへの理論への判断にも影響するでしょう。

ところで、一連の惑星運動理論から得られる予測は、どれも似ていたというのは誤解です。ニュートンの予測は、橋渡しという意味では優れていますし、GPSを稼働させるうえでは多少不十分という程度ですが、パルサーやクエーサー、あるいは宇宙全体を説明するとなると、どうしようもないほど間違っています。そうした天体物理学現象すべてを正しく理解するには、アインシュタインによるまったく異なる説明が必要です。

連続的な科学理論の意味にこれほど大規模な不連続があるという点では、生物学との類似性はありません。進化する種では、ある世代で支配的とされる系統と、その前の世代で支配的とされる系統との違いはわずかしかないからです。科学的発見は漸進的なプロセスでもあります。科学では、そうしたあらゆる漸進的なプロセスと、悪い説明に対する批判と拒絶のほぼすべてが、科学者の頭のなかに存在しています。ポパーが言ったように、「われわれは、自分の理論を自分の代わりに葬り去ることができる('We can let our theories die in our place.')」のです。

理論に自らの生をかけることなしにそれを批判するというその能力には、もう一つ、より重要な長所があります。進化する種では、各世代の生物の適応が、その生物が生き続けるための、そして自らを次世代に伝えるうえで直面するあらゆる試練をくぐり抜けるための十分な機能を持っていなければなりません。それとは対照的に、科学者を一つの良い理論から次の説明へと導く中間的な説明が、有効なものである必要はまったくありません。こういった根本的な理由があるからこそ、説明的なアイデアは偏狭思考から抜け出せるのに、生物学的進化や経験則にはそれができないのです。

抽象概念は実際に物理的対象に影響を与えている

第4章では、知識はそれぞれが自らの複製のために生物や脳を「使う」(したがって、それらに「影響を与える」)抽象的な自己複製子だと述べました。それは、今まで述べてきた創発的レベルの説明よりも高レベルの説明です。抽象的なもの—遺伝子や理論のなかにある知識といった非物質的なもの—は、物質的なものに影響を与えているという主張です。物質的にみれば、そうした状況では、一組の創発的な実体(遺伝子やコンピューターなど)がほかの実体に影響を与えているだけですが、抽象概念はより完全な説明には不可欠です。コンピューターがチェスであなたに勝つ場合、実際に勝つのはプログラムであって、シリコン原子でもコンピューター自体でもありません。プログラムの知識の内容がすべてです。そしてその内容という説明が抽象概念に言及することは不可避です。したがって、そうした抽象概念は、その説明によって必要とされる形で存在し、実際に物理的対象に影響を与えています。

コンピューター科学者のダグラス・ホフスタッター(Douglas Richard Hofstadter,1942-)は、著書『わたしは不思議の環』で、無数のドミノでできた専用コンピューターを想像しています。一定時間後にバネで起き上がるドミノを多数用意し、ループや分岐、合流のあるネットワークの形に配置します。うまく設計すれば、ドミノの列を伝わるシグナルで、任意の計算を組み立てられます。ホフスタッターの思考実験では任意の数が素数かどうでないかを計算するためのプログラムを想定しています。あるドミノが、入力値の約数が見つかった時だけ倒れるのです。

素数である641を入力し、ドミノの運動が始まります。このドミノ・ネットワークの目的を知らない観察者がドミノの動きを見て、ある特定のドミノはずっと立った状態のままで、どんなドミノにも決して影響されないことに偶然気がつきます。その観察者はそのドミノを指さして、「どうしてあのドミノは決して倒れないのか」と不思議そうに尋ねます。それに対する一つ目の種類の答えは、「そんなの、その前にあるドミノが決して倒れないからに決まっているじゃないか」というものです。 確かに、その答えは今のところ正しいのですが、ずっと正しいとは言えません。それは別のドミノに責任を転嫁しているだけです。数え切れないほど何度も責任を転嫁していけば、最終的には最初のドミノに到達します。

その時点での還元主義的な説明は、「そのドミノが倒れなかったのは、最初のドミノを倒すことで始まる動きのパターンのどれにも、そのドミノが含まれていないからだ」ということになります。しかし、それは既にわかっています。面倒なプロセスを踏まなくても同じ結論には到達できるのです。そしてこのことが正しいのは間違いありません。しかしそれは私たちが探していた説明ではありません。なぜなら、その説明が取り組んでいるのは「出力のドミノは倒れるだろうか」という予測の問題だからです。そしてそれは間違った創発性レベルで質問しています。私たちが答えを探しているのは、「なぜそのドミノは倒れないのか」という問題です。

適切な創発性レベルにある、異なった方法の説明は次のようなものです。「641が素数だから」

この説明は、先ほどの答えと同じように正しく、物理的なことについてはまったく述べていないという興味深い性質があります。焦点が集団的性質へと上昇しただけではありません。こうした性質は何らかの形で物理的なものを超越し、素数性などの純粋な抽象概念と関連するようになります。

なお、ホフスタッターは「素数性が、特定のドミノが倒れない理由に対するもしかすると唯一の説明かもしれない」と述べますが、この点は修正が必要です。物理にもとづく説明も同様に正しいです。ホフスタッターは残念ながら還元主義を受け入れてしまっています。ホフスタッターは、著書を通じて、心は身体に影響するのか、といういわゆる「心身問題」を扱っています。ホフスタッターは最終的に、哲学者のダニエル・デネット(Daniel Dennett,1942-)の説に従い、「私」は幻想であるという結論に至っています。この結論によれば、「物体を好きなように動かす」ことができないのは、「(その)振る舞いを決めるには物理法則のみで十分」だからです。ここから、ホフスタッターによる還元主義が出てきます。

しかし、物理法則も何かを動かすことはできません。説明し、予測するだけです。また、物理法則は私たちにとっての唯一の説明でもありません。「641が素数だから」という説明は、ことのほか良い説明であり、物理法則と矛盾しませんし、純粋な物理法則の観点よりも多くのことを説明します。

「原因」というアイデア自体、創発的で抽象的です。哲学者のデイヴィッド・ヒューム(David Hume,1711-1776)が指摘したように、私たちは因果関係を認識することはできません。認識できるのは、出来事の連続だけです。さらに、運動の法則は情報を失うことがなく「保守的」です。すなわち、運動の法則は、初期状態を与えればあらゆる運動の最終状態を決定するのと同じように、最終状態を与えることで初期状態を決定したり、任意の時点の状態から別の任意の時点の状態を決定したりします。そのため、こうした説明レベルでは、原因と結果は入れ替え可能です。

同じ現象に対して異なる創発レベルに複数の説明があっても、矛盾は生じません。「641が素数だから」という答えが依存している素数理論は、物理法則の一つではないし、その近似でもありません。それは、抽象概念と、抽象概念の無限集合に関する理論です。私たちが、あらゆる整数の集合といった無限に大きいものの知識を得られるのは、不思議でも何でもありません。それは単にリーチの問題です。「小さな整数」だけに限定した整数論は、恣意的な修飾詞や、回避策、未回答の問題で一杯にならざるをえません。さまざまな種類の無限については第8章で議論します。

抽象概念とコンピューターと脳

創発的な物理量についての理論を用いて、やかんの水の振る舞いを説明する場合には、現実の物理システムの近似として、ある抽象概念(理想化されたやかんのモデル)を使っています。しかし、コンピューターを使って素数を調べる場合には、その逆の作業を行います。つまり、物理的なコンピューターを、素数を完璧にモデル化する抽象的なコンピューターの近似として使っているのです。現実のコンピューターと違い、抽象的なコンピューターは間違うことはありませんし、メンテナンスも必要ありません。そしてプログラムを実行するためのメモリと時間が無限にあります。

同じように、私たちの脳も、純粋数学の抽象概念のような物理的世界を超えたものについて知るために使えるコンピューターです。抽象概念を理解する能力というのは、人々がもつ創発的な性質です。古代アテナイの哲学者プラトン(B.C.427-B.C.347)はこれに大いに困惑させられました。幾何学の定理は決して観察できない知識が用いられています。それはどこから来たのでしょうか。プラトンは、あらゆる人間の知識は超自然的な存在によってもたらされるはずだと結論しました。

抽象概念についての知識がどこからもたらされるのかという問題は、謎めいた話ではありません。他のあらゆる知識と同じように、推量がスタートであり、批判と、良い説明の追求を経由してもたらされます。科学の範囲外にある知識は手に入れられないという考えが妥当なように思えるのは、ひとえに経験論のせいです。そうした知識が科学理論よりも「正当化されていない」ように思えるのは、「正当化された真なる信念」という誤解のせいにすぎません。

経験は哲学において一つの役割を担っています。それはちょうど、経験が科学において担っている、実験的テストの役割にあたるものです。経験は主として、哲学上の問題をもたらすのです。現実世界についての知識をどうやって獲得できるのかという問題が解決の難しいものではなかったら、科学哲学は存在しなかったはずです。社会を動かす方法についての問題がはじめになかったら、政治哲学というものは存在しませんでした。経験は、既存の複数のアイデアに矛盾を引き起こすことによってのみ、問題をもたらします。もちろん、経験は理論をもたらしません。

道徳と真実の関係

道徳哲学の場合に経験論と正当化主義が陥る誤解は、「"〜である"という命題からは"〜すべき"という命題は導き出せない」(懐疑論の哲学者デイヴィッド・ヒュームの言葉の言い換え)という格言として表されることが多いです。それは、道徳論は事実に関する知識からは推定できないという意味です。これは既に一般通念になっていて、道徳に関する、ある種の独断的な絶望につながっています。「"〜である"という命題からは"〜すべき"という命題は導き出せないのだから、道徳は合理的に正当化できない」ということです。そこで残されるのは、不合理を受け入れるか、あるいは道徳的判断を行わずに生きて行こうとするかという、二つの選択肢のみです。どちらの選択肢も、道徳的に間違った選択になってしまいがちです。それは、不合理を受け入れること、あるいは現実世界の説明を試みないことが、(単なる無知ではなく)事実上誤った理論につながってしまうのと同じです。

「"〜である"」という命題から"事実"に関する理論を導くことは科学の役割ではありません。科学の知識の成長は、良い説明を見出すことから構成されており、ある人の信念を正当化する方法からは構成されていません。また、事実に関する証拠と道徳的な格言は論理的に独立していますが、事実の説明と道徳の説明は独立ではありません。したがって、事実に関する知識は、道徳の説明を批判する上で有用なのです。

たとえば、19世紀に、アメリカの奴隷がベストセラーの本を書いたとしても、その出来事によって「黒人は神の摂理によって奴隷となるよう意図されている」という命題が論理的に除外されることはないでしょう。経験によってその命題を除外できないのは、その命題が一つの哲学理論だからです。しかしその出来事は、多くの人がその命題を理解するうえで用いており、必要だった説明を破綻させる可能性があります。そして結果的にそういった人々は、以前に受け入れていた説明に疑問を抱いたかもしれません。

逆に、非常に不道徳な教義の支持者たちはかならずというほど、関わりのある事実関係についての嘘も信じています。たとえば、2001年9月11日の米国同時多発テロ以降、世界中のかなり多くの人々が、この事件は米国政府か、イスラエルの秘密情報機関によって実行されたと信じています。まったくの事実誤認なのですが、そこには、道徳上の誤りの痕跡がはっきりと刻まれています。どちらの場合も、嘘へとつなげているのは説明です。西洋人が無差別に殺されなければならない理由を道徳的に説明するためには、欧米諸国の姿は見せかけにすぎず、本当の姿は違うということを、事実の面から説明する必要があります。それには、陰謀説や歴史の否定などを受け入れることが求められるのです。

一般的には、道徳に関する状況を特定の価値観の見地から理解するには、いくつかの事実を確実な方法として理解する必要があります。逆に、特定の価値観を道徳に関する状況から理解するのにも、いくつかの事実を確実な方法として理解する必要があります。たとえば、哲学者のジェイコブ・ブロノフスキー(Jacob Bronowski,1908-1974)が指摘したように、事実に関する科学的発見の成功には、前進するのに必要なあらゆる種類の価値観に関する確約(commitment)が伴っています。科学者は、真実を、そして良い説明を尊重し、アイデアや変化を喜んで受け入れる必要があります。科学コミュニティは、そして文明全体もある程度は、寛容や完全性、議論の公開性を尊重しなければなりません。

こうしたつながりは驚くようなことではありません。真実には、論理的な一貫性とともに構造上の一体性があるので、正確な説明が他から完全に隔てられてしまうことはありません。宇宙は説明可能なので、道徳的に正しい価値観は事実に関する正しい理論と結びつき、道徳的に間違った価値観は誤った理論と結びつくはずです。

哲学においても還元主義は空虚だ

道徳哲学における基本的な考えは、次に何をすべきか、ということです。もっと一般的に言うならば、どのような人生を送るべきか、そしてどのような世界であってほしいか、ということです。もしあなたが突然、地球上で最後の人間になったら、どんな人生にしたいのかと悩むことでしょう。「何でもいいから、私の気に入ることをすべきだ」と決めたとしても、そこからヒントはほとんど得られません。なぜなら、あなたの気に入ることというのは、良い人生とは何かというあなたの道徳的判断に左右されるのであり、その逆ではないからです。

これはまた、哲学における還元主義の空虚さを示しています。というのは、私があなたに、人生で追求すべき目的について助言を求めた場合、物理法則が要求することを行うように助言してもらっても仕方ないからです。いずれにせよ、私は物理法則の要求通りに行動することになります。また、私の好きなことをするようにと言ってもらっても意味はありません。自分がどんな人生を送りたいか、あるいはどんな世界であって欲しいかを決めてからでなければ、私は自分が何をするのが好きなのかわかりません。

私たちの好みはこのように、少なくとも部分的には自らの道徳的説明によって形成されているので、人々の好みを満足させるのに有用だという観点だけから善悪を決めるのは、筋が通りません。そうしようとするのが「功利説」と呼ばれる、影響力の強い道徳哲学の目的です。功利説が果たした役割は、科学哲学において還元主義が果たした役割とほとんど同じです。つまり、功利説は伝統的なドグマに対抗するうえで、自由をもたらす活動の中心としての役割を果たしますが、一方で功利説自体の実際的な内容には、真実がほとんど含まれていないのです。

次に何をすべきかという問題は避けることはできません。さらに、善悪の区別は、こうした問題に対する最善の説明に現れるものなので、私たちはそうした善悪の区別を現実のものと見なす必要があります。別の言い方をすれば、善悪の間には、客観的な違いが存在します。善悪というのは目標や行動の現実的な属性なのです。第14章では、同じことが美学の分野にも当てはまること、つまり、客観的な美というものが存在することを議論します。

抽象概念の諸側面

美や、善悪、素数性、無限集合などはすべて、客観的な形で存在します。しかし物理的に存在するわけではありません。それはどういう意味でしょう。確かにそれらは、あなたに影響を与えますが、どうやらそれは物理的対象が影響を与えるのと同じ意味ではないようです。通りを歩いていて、こういったものにつまずくことはありません。しかしそうした区別は、経験論に偏った私たちの感覚が想定するほど大きくはありません。

物理的対象の「影響を受ける」とは、その物理的対象に関する何かが、物理法則を通じて、変化を引き起こしたという意味です。しかし因果関係と物理法則のどちらも、それ自体は物理的対象ではありません。それらは抽象概念であり、そうした抽象概念についての私たちの知識は、他のすべての抽象概念と同じく、私たちの最善の説明がそれらを引き合いに出しているという事実から生まれるのです。進歩は説明に依存します。したがって、世界を、説明できない規則性がある一連の出来事にすぎないとみなそうとすることは、進歩をあきらめることになります。

こういった、抽象概念が現実に存在するという主張からは、それがどのようなものとして存在するのか、たとえば、どの抽象概念がほかの抽象概念の単なる創発的側面であり、どの抽象概念がほかの抽象概念とは独立に存在するのかといったことはわかりません。物理法則が異なっている場合にも、道徳法則は変わらないのでしょうか。物理法則が異なる場合の道徳法則において、権威に対しむやみに服従することが、知識を一番うまく得られる方法だとしているなら、科学者は進歩するために、私たちが科学的探求の価値だと考えるものを回避しなければならなくなるでしょう。道徳はそれより自律的だというのが私の推測です。よって、そうした異なる物理法則は道徳に反するということも、また現実の物理法則よりも道徳的な物理法則を想像することも、理にかなっています。

抽象概念の世界へのアイデアのリーチは、そうしたアイデアが含んでいる知識がもつ特性です。脳のもつ特性ではありません。理論というものは、たとえそれを生み出した人物が気づいていなくても、無限のリーチを持ちます。しかし、一人の「人」もまた抽象概念です。そして人々には独特の、ある種の無限のリーチ、つまり説明を理解する能力の及ぶリーチがあります。そしてこの能力自体が、「普遍性」というより広い現象の一つの例です。普遍性については次章で議論します。

 

用語解説

創発性レベル(Levels of emergence):現象のうち、それを構成する実体(原子など)に分解せずに、現象どうしの視点からうまく説明できるもの

自然数(Natural number):1、2、3のような整数。

還元主義(Redictionism):科学はいつでも、構成要素に分解することで、物事を説明しなければならない、あるいはそうすべきである(したがって高レベルの説明は基本的ではない)という誤解。

全体論(Holism):重要な説明はすべて、全体の観点からみれば構成要素であり、その逆ではないとする誤解。

道徳哲学(Moral philosophy):どんな人生を送るべきかという問題に対処するもの。

____________________________

 

書評

自分がこの章を初めて読んだときには、たまげました。還元主義や功利主義による説明は無機的な冷たさがある、程度のイメージしか持っていなかったのですが、それが必ずしも説明として良いとは限らないという主張は非常に腑に落ちますし、霧が晴れたような気持ちになります。哲学というのは、ドイチュから入れば余計な勉強を省けると思います。

ホフスタッターの代表作『ゲーデル・エッシャー・バッハ』(白揚社)は、前著『世界の究極理論は存在するか』で「あらゆる人の必読書」として参考文献に挙がっています(ごめんなさい、読めていません)。デネットクオリアの否定論へのドイチュの反論は第7章でさらに強化されます。 

それにしても、繰り返しになりますが、あらゆる創発性レベルが最善の説明になり得るという説明は、非常に勇気づけられるものです。この発想は経済学などの社会科学分野でも有用でしょう。たとえばお金というものは創発的な現象だと考えるべきですが、その概念を所与とした議論も有効です。ランボルギーニプリウスは実用性に分解して考えると、機能として大して変わらない(あるいはプリウスの方が便利である)のに、値段が大きく違います。イメージや文脈という別の創発性レベルでの説明があるのです。そうした文脈では、凹みなどの傷は意味を持ちます。逆に、「傷がついた、言い換えればエントロピーを高めたことが価値を下げた、つまりエントロピーこそが価値だ」という要素還元的な説明では、そもそもランボルギーニプリウスの値段の違いを説明できないはずです。

近年の「デザイン」をめぐる議論の混乱も、本章での整理を踏まえればかなり交通整理されると思います。人間の社会システムにはさまざまな創発性レベルがあります。デザインとは、そういったさまざまな創発性レベルにおける問題解決です。人間の周辺に問題があることが多いため、デザインは人間を中心としたものだという考え方が生まれましたが、より正確には道徳は物理法則と無関係ではないというドイチュの主張から裏付けられる話だと思います。かつてデザインというのは物理的な製品にのみ適用される用語でした。現在では企業活動や人の生活のあらゆる創発性レベルで適用される用語になっています。つまり、社会ますます多数の創発性レベルの層で問題解決が図られるようになってきているということです。過去に問題が解決されたことで、現在は「より良い」問題に取り組めているとも言えます。

ドミノの例を読んで自分の脳裏をよぎったのは、マリオメーカー計算機(とマインクラフト計算機)でした。

ドミノでの計算機よりもさらに理解の難しい構造をしていますが…。

 

参照

システム思考については木村英紀氏の整理が良いと思います。

・木村英紀『世界を動かす技術思考 要素からシステムへ』,(ブルーバックス,2015)

 

デザインの定義については、内藤廣氏のものが素晴らしいと思います。

内藤廣構造デザイン講義』,(王国社,2008)

「デザインとは、エンジニアリングと人の心を、工学と人文を繋ぐもの、異なるテリトリーを翻訳して繋ぎ合わせるものです。」(p42)

 

内藤廣形態デザイン講義』,(王国社,2013)

「デザインとはその問題だけを解決することではありません。現れてくる問題を予測し、拡大していく領域の壁をどうやって乗り超えられるかだと思っています。領域の壁をまたぐための力、というふうにデザインを定義してもいいかも知れない。」(p33)

 

IDEO社のメンバーは、非常に大きな社会問題を解決する方法としてデザインを使うことを宣言しています。

・ティム・ブラウン著,千葉俊生訳,『デザイン思考が世界を変える〔アップデート版〕』(早川書房,2019)

「今日の私たちが直面する難問は、あらゆる方向に広がっているが、この10年間のIDEOの活動を通して見ると、その中でもとりわけ緊急性が高く、なおかつデザインが有望な道筋を描きはじめている分野がいくつか見えてくる。まとめると次のようになるだろう。

① 時代遅れになった社会システムのデザイン

② 参加型民主主義の復興

③ 脱自動車時代の都市のデザイン

④ 人間に優しい人工知能、スマート・マシン、ビッグ・データのデザイン

⑤ バイオテクノロジーや人間の誕生と死にまつわるデザイン

⑥ 線形経済から循環経済への転換」(p.297)

『無限の始まり』第4章「進化と創造」

『無限の始まり』全体目次 第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

 

第3章は、デイビッド・ドイチュの人類史観が凝縮された章だったと言えます。すなわち、人間がもつ、実在を説明する能力は宇宙的な意義があるという議論です。数十億年間、ただ退屈なサイクルを繰り返していた宇宙の環境は、知識が到達することでそれまでと全く別の物理的な変化を起こします。

知識には、人の思考が生み出す知識の他に、遺伝子としてコードされた生物進化によるものもあります。この二つの知識の類似性と相似性が本章前半のテーマです。

後半ではこの宇宙の物理定数が私たちの生存にぴったりである理由を説明する理論として採用されている「微調整」についても触れながら、創造説について俯瞰的に議論がなされます。

本章の原文でのタイトルは"Creation"です。

____________________________

 

人間の「知識」と生物の「知識」

人間の脳にある知識と、生物学的適応としてある知識はどちらも、広い意味での進化、つまり交互に起こる「選択と既存情報の変化」という進化によって生み出されています。人間の知識の場合、既存情報の変化は推量、選択は批判と実験によります。一方、生物の場合、既存情報の変化には遺伝子の突然変異(ランダムな変化)が関係しています。また自然選択では、その生物の繁殖能力を最も大幅に向上させる変種が有利となり、その結果、その変異体の遺伝子を集団に拡散させるメカニズムが働いています。

 遺伝子が任意の機能に適応していると言った場合、遺伝子にわずかな変化を与えても、その機能を実行する能力が向上することはほとんどないという意味です。別の言い方をすれば、良い説明と同様に、良い適応は、機能を保ったまま変化するのが難しいという点で区別がつきます。

 人間の脳とDNA分子にはそれぞれ多くの機能がありますが、注目すべきは、それらが汎用情報メディアであることです。原理上は、どんな種類の情報でも保管できます。さらに言えば、そのそれぞれがある種の情報を保管できるように進化していますが、それらの情報には共通して、宇宙的に意義のある一つの特徴があります。それは「いったん適切な環境のなかに物理的に具現化されれば、その状態を続けようとする傾向がある」ということです。そうした情報(私はそれを「知識」と呼びます)〔※ドイチュによる知識の定義はその後アップデートされています。第3章書評を参考〕が、進化や思考の誤り修正プロセスを踏まずに出現する可能性は非常に低いのです。

 この二種類の知識のあいだには、重要な相違点もあります。一つは、生物学的知識は非説明的であり、ゆえに有限のリーチしかありませんが、説明的である人間の知識は、広大な、あるいは無限のリーチをもつ点です。もう一つは、突然変異がランダムに生じるのに対して、推量はある目的をもって、意図的に組み立てられる点です。

とはいえ、進化論と人間の知識は関連性は高く、生物学的進化についての歴史上重要な誤解にあたるものが、人間の知識についての誤解のなかにもあります。

 

創造説、自然発生説、目的論的証明、ラマルク主義

創造説は、超自然的な存在があらゆる生物学的適応を設計し、創造したとする考え方です。すなわち、「神々がそれを行った」という悪い説明です。変更するのが難しい条件によって補完されない限り、そうした理論は問題に対処することすらできません。生物圏を説明するという問題は、その適応において具現化されている知識がどうやって創造されるのかを説明する問題だと言えます。創造説に立てば、あらゆる生物の設計者とされる者は、その生物の仕組みについての知識を創造したはずです。それゆえ創造説は、本質的な難問に直面します。その設計者は完全に超自然的なもの、つまりあらゆる知識を備えて「ただそこにいた」存在なのか、あるいはそうではないのかという難問です。「ただそこにいた」存在だとすれば、(生物圏に関する)説明とはなりません。あるいは生物圏自体は設計者と同じ知識を備えて「たまたま発生し、その知識が生物のなかに組み込まれた」と言う方が簡潔です。一方で、その超自然的な存在が生物圏を設計し創造した方法は、それはもはや超自然的存在ではなく、ただ目に見えない存在です。例えばそれが地球外生命体であれば、創造説とは言えなくなります。しかし、地球外生命体に設計者がいたと主張するなら話は別ですが。さらに、すべての設計者は、当然、その適応がそうした形になるよう意図したはずです。しかし、脊椎動物の眼の欠陥や、類人猿のもつ壊れたビタミンC合成遺伝子などの証拠は、設計に失敗したように見えます。もちろん、このような設計に失敗した機能にはまだ見つかっていない目的があるのだという立場に逃げることもできますが、しかしそれは悪い説明です。そうした説明では、設計に失敗したり設計がされていない実体はどれも本当は完璧に設計されていると主張できてしまいます。

創造説の基本的な欠陥は、啓蒙運動以前の時代の、人間の知識に対する権威的な概念の基本的な欠陥でもあります。ある種の創造説は、ある種の知識が超自然的存在から初期の人間へ語られたという点でまったく同じ説になっています。それ以外の創造説では、偏狭な社会機能(政府における支配者階級の存在や、宇宙における神の存在そのものなど)は、タブーによって守られているか、まったく無批判に当たり前とされており、アイデアとして認識もされていません。

自然発生とは、生物がほかの生物から生まれるのではなく、それに先行する無生物だけから形成されることです。たとえば、部屋の暗い隅にあるぼろ切れの山からネズミが生まれるのが自然発生です。小動物は普通の方法での繁殖に加えてそうした方法でたえず自然発生しているという説は、数千年ものあいだ、異論の余地がない一般通念の一部とされていて、19世紀になっても真剣に考えられていました。自然発生説はこの頃までに微生物に限り議論されるようになっていましたが、これは実験的に反論するのが難しかったのです。ルイ・パスツールLouis Pasteur,1822-1895)は1859年、精巧な実験を行い、自然発生説へ反論することに成功しました。

「目的論的証明」は「世界の一部の側面は、人間が設計したのではないのに、設計されたように見える。”設計には設計者が必要”なので、神が存在するはずだ」という考え方です。目的論的証明は神の存在を証明するための古典的な「証拠」の一つとして、数千年ものあいだ用いられてきました。すでに述べたように、この考え方には、そうした設計を生み出す方法についての知識を、どうやって生み出したのかという問題に対処していないので、悪い説明です。古代アテナイの哲学者ソクラテス(B.C.469?-399)は、生物における「設計らしきもの」を説明する必要のあるものだと指摘しており、これは的を射ていました。ソクラテスは、何が「設計らしきもの」を構成しているのか、その理由は何かということについては、いっさい言明していません。結晶や虹には「設計らしきもの」はあるのでしょうか? 太陽や夏はどうでしょうか? それらは眉毛などの生物学的適応とどう違うのでしょうか?

「設計らしきもの」について、具体的には何が説明される必要があるのかという問題にはじめて取り組んだのは、聖職者で、目的論的証明の熱心な支持者だったウィリアム・ペイリー(William Paley,1743-1805)でした。ペイリーは著書『自然神学(National Theology)』で、そこに時計が落ちていることは、石が落ちているとは違う意味があるということを示しました。その理由は、時計はある目的を果たすだけでなく、その目的に適応しています。時計の構造は、正確な時を刻むという目的に触れることなく説明することはできません。それは物質の配置としては珍しく、それができたのは偶然ではあり得ず、人々がその時計を設計したに違いないのです。もちろん、同じ議論はネズミなどの生物にもよりいっそう当てはまるということを示します。ネズミの眼球の水晶体には、光を集めて網膜上に像を結ぶという、望遠鏡のレンズと同じ目的があります。さらにこの網膜上の像には、食物や危険などを認識するという目的があります。

ペイリーは自然発生するとされていたネズミの全体的な目的が何であるかは知りませんでした。しかし、ペイリーの眼球の話だけでも、ペイリーの主張には十分です。ある目的のための設計らしきものの証拠となるのは、部品すべてがその目的を果たすことだけではなく、そうした部品をわずかに変えると、その目的にあまり、あるいはまったく適合しなくなることです。良い設計は、変更が難しいのです。

時計やネズミでは、知識は具現化されています。現在では、私たちは「設計者なき設計」がありえることを知っています。(後述するネオ・ダーウィニズム。)ペイリーは問題の理解という点では全面的に正しかったのです。しかし、創造説では究極の設計者を誰が設計したのか、という問いに答えられません。すなわち、ペイリー自信が出した答えは、その論拠により自分自身で除外されてしまいます。彼はそれに気付きませんでした。

チャールズ・ダーウィン(Charles Robert Darwin,1809-1882)の進化論の発表以前から、人々は生物圏とその適応は徐々に現れたのではないかと考えはじめていました。ダーウィンの祖父で、啓蒙運動の熱心な支持者だったエラズマス・ダーウィン(Erasmus Darwin,1731-1802)などはそうした機能向上のプロセスを「evolution」と呼びました。これは現在の用法とは異なります。ダーウィンは、自らが発見したプロセスを「自然選択による進化('evolution by national selection')」と呼ぶことで区別していますが、それは「変化と選択による進化('evoluton by variation and selection')」という名称の方がよかったでしょう。

「自然選択による進化」は単なる「進化」よりもはるかに本質的です。機能の向上に関するあらゆる理論は、「その機能の向上を起こす方法についての知識はどのようにして生まれたのか」という問題を提起します。それは最初から存在していたと考えるのは創造説です。あるいは、たまたま生じたとするのは自然発生説です。

その疑問への答えを19世紀前半に提案したのはジャン=バティスト・ラマルク(Jean-Baptiste Lamarck,1744-1829)でした。彼が提案した答えは、現在「ラマルク主義(Lamarkism)」として知られています。「生物が一生のうちに獲得する機能の向上は、子どもが受け継ぐことができる」というのがラマルク主義の基本的なアイデアです。例えば、ある個体が頻繁に使う筋肉は大きく強くなり、ほとんど使わない筋肉は弱くなると行ったことです。このような「用不用説('use-and-disuse'explanation)」はエラズマス・ダーウィンも独自に到達していました。た、ラマルクは複雑性は増大し続けるという、自然法則に組み込まれている傾向が、機能の向上を後押しするという考えを提唱しています。ラマルクは当時一般的だった自然発生説を自らの進化理論に明示的に取り入れています。自然発生により単純な生物が供給されることで、複雑な生物だけでなく単純な生物もいることを説明しています。

しかし、適応の進化を説明できるのは、単なる複雑性ではありません。それは知識でなければなりません。また、進化的適応は、一生の内に個体に起こる変化と、まったく異なる特徴を備えています。進化的適応は新たな知識の創造が伴います。個体の変化は、変化を起こす適応がすでにある場合にしか生じません。筋肉は使えば強くなるという傾向は、精緻で知識負荷的(knowledge-laden)な一連の遺伝子によって制御されています。ラマルク主義では、そうした遺伝子の中の知識が生み出された仕組みを説明できません。たとえば、トラが、毛皮にもう少し縞模様が多ければ食糧が少し増えることを、ラマルク主義的なメカニズムが「わかっていた」必要があります。また、色素を合成して毛皮に分泌し、ちょうど良いデザインの縞模様を生み出す方法を「わかっていた」必要もあります。

ラマルク主義が犯した根本的な失敗は、帰納主義と同じ論理です。どちらの考えも、新たな知識(ラマルクは適応、帰納主義は科学理論)が何らかの形ですでに経験のなかに存在している、あるいは経験から機械的に導き出されると過程しています。しかし実際にはどんなときも、知識というのはまず推量され、次にテストされなければなりません。これはダーウィンの理論でも言及されています。まず突然変異が起こり(突然変異はどんな問題が解決されるのかを考慮しない)、次に自然選択によって、将来世代で再び存在できる可能性の低い変異遺伝子が捨て去られるのです。

 

ネオダーウィニズム

ネオ・ダーウィニズムの中心となる考え方は、集団に最も広まりやすい遺伝子が、進化において有利となるということです。

ダーウィン的進化についての誤解で一般的なのは、進化は「種の利益」を最大化する、というものです。現実には、進化は種の利益も、個体の利益ですらも、最大化しません。

仮に、一つの島で、ある鳥が4月に巣作りをしているとします。特定の時期が巣作りに最適な理由は、気温、捕食者、食糧や巣の材料が手に入るかどうかといった要素を含む、さまざまなトレードオフで説明できます。あるとき一羽の鳥に、3月に巣作りをする突然変異が起きたとします。その個体は島で最も良い営巣場所を確保できるでしょう。生き残りに有利なこの遺伝子の割合は、世代を経るごとに種の中で増え、最終的にはこの遺伝子のアドバンテージは失われます。そしてこの状態は当初の状態に比べ、個体数が減少しています。したがって、個体数を最大化する(「種の利益になる」)ことに最大限に適応した遺伝子が存在するという、われわれが想像した初期の状態は、不安定です。

これに関連する誤解は、進化はいつでも適応的だという考え方です。つまり、進化はいつでも進歩をもたらす、あるいは少なくとも、有益な機能に何らかの向上をもたらして、その機能を最大化するように作用する、という誤解です。この誤解は「適者生存('the survival of the fittest')」と言われることがあり、ハーバート・スペンサー(Herbert Spencer,1820-1903)が生み出した言葉で、残念なことにダーウィン自身も採用しています。鳥の例で進化が種だけでなく個々の鳥も被害を受けたように、適者生存は事実として間違っています。

鳥の例で進化が達成したのはなんでしょうか。最大限に高められたのは、その環境への変異遺伝子の機能面での適応ではなく、生き残った変種が集団全体に広がる総体的な能力です。進化は、集団に最も広まりやすい遺伝子に優位に働くだけです。進化は最適でないばかりか、種と全個体にとって完全に有害な遺伝子が有利になることさえあります。集団内に最も広まりやすい遺伝子が、種に対して与えるデメリットが十分大きいと、その種は絶滅してしまいます。生物学的進化には、それを防ぐ手立てはありません。

生物とは、遺伝子が集団内に広まるという目的を達成するために用いる奴隷、あるいは道具です。ほとんどの遺伝子が自分の種とその個体に対して最適ではないにしろ、ある程度の機能面での恩恵を与えているのは偶然ではありません。

さらに、遺伝子の知識のリーチという現象を考えることができます。その個体が遺伝子の拡散のために厳密に必要とされる以上に多岐にわたる状況を切り抜けるのに役にたつことがあるのです。ラバには繁殖能力がないにも関わらず、生き続けられるのはそのためです。

ネオダーウィニズムは、その根本的なレベルでは生物学的なことについては何も言及していません。ネオダーウィニズムがベースとするのは、「自己複製子」(自分自身の複製に因果的に寄与するあらゆるもの)というアイデアです。例えば、ある種の食べ物を消化する能力を与える遺伝子は、その食べ物を消化できなければ弱るか死ぬかしてしまう状況において、生物が健康でいられるよう仕向けます。したがって、その遺伝子は、その生物が将来的に子どもを産む確率を高めるので、その子どもはその遺伝子の「複製」を受け継ぎ、広めていくことになります。

イデアもまた自己複製子になり得ます。例えば、面白いジョークは自己複製子です。面白いジョークはある人の頭に焼き付くと、その人物がほかの人々に向かってそのジョークを言うよう仕向けます。それによってそのジョークはほかの人々の頭へコピーされます。ドーキンスは、自己複製子であるアイデアのことを「ミーム」と命名しました。ほとんどのアイデアは自己複製子ではありません。自己複製子ではないアイデアは、私たちがそれをほかの人々に伝えるよう仕向けることはありません。しかし、言語や科学理論、宗教上の信念、また英国人であるといった、文化を構成する何とも言い難い心理状態、あるいはクラシック音楽を演奏する技術など、長く残るアイデアはほとんどがミームです。

ネオダーウィニズムの基本的な主張を、最も一般的な形で言うと、変異(たとえば不完全なコピーなど)をするようになった自己複製子の集団は、自らを複製することがライバルよりも得意な変種に乗っ取られてしまう、ということです。この深遠な真理は、私たちの、機能や目的の観点からの説明を好むような直観とは反します。

つまり、遺伝子に具現化されている知識とは、ライバルの遺伝子を犠牲にした自己複製の方法についての知識なのです。遺伝子はたいてい、自らが含まれる生物に有益な機能を与えることによって、こうした自己複製を行いますが、その機能についての知識は、遺伝子のなかの知識に付随的に含まれています。一方でそうした機能は、遺伝子のなかに、環境の規則性や、ときには自然法則の経験則的近似さえもコード化することによって実現されますが、この際、遺伝子は付随的に、その知識もコード化しています。

説明的でない人間の知識も、よく似た方法で進化することがあります。経験則は、次世代の利用者に完全な形で伝えられることはありません。また、長いあいだ生き延びる経験則はかならずしも、表向きの機能を最大化するものではありません。たとえば、美しい韻を使って表された規則のほうが、それよりも正確だが洗練されていない散文で表現された規則よりも、良く記憶され、繰り返し用いられる可能性があります。

説明的理論は、より複雑なメカニズムによって進化します。良い説明は変えるのが難しく、説明の伝達中に誤りが生じても、受信者がそれを検出し、修正することは容易です。説明的理論における変異の源として最も重要なのは、創造力です。人はほかの人から聞いたアイデアを理解しようとするとき、推量を行います。説明を正確に受け取った後は、それを改良しようとすることも多いでしょう。

遺伝子とは異なり、多くのミームは、複製されるたびに違った物理的形状を取ります。人々がアイデアを伝えるときに、自分が聞いたときとまったく同じ言葉を使うことはほとんどありません。しかし、私たちは伝えられているものは終始同じアイデア、つまりミームだと考えます。ほとんどのミームの場合、実際の自己複製子とは抽象的な存在です。つまり、それは知識そのものと言えます。これは原理的には遺伝子にも当てはまります。バイオテクノロジーでは日常的な作業として、遺伝子のコンピューターメモリーへの転写が行われています。その場合、遺伝子は、ある種の物理的形状で保存されています。こうした記録は、再びDNA鎖に翻訳され、別の種類の動物に移植されます。

つまり、人間の知識と生物学的適応はどちらも、抽象的な自己複製子です。それは、いったん適切な物理システムで具現化されれば、そのままであり続ける傾向をもつ情報の形態です。

ネオダーウィニズムの原則はある観点からみれば自明であるという事実は、それ自体がネオダーウィニズムの批判として用いられてきました。しかし、ネオダーウィニズムを反証するには、利用可能な最も良い説明に照らしてみれば、知識が違った方法で生まれたことを示唆するような証拠が必要です。たとえば、ある生物が、ラマルク主義や自然発生説で予測されるような、都合の良い突然変異だけを経験してきたことが観察されれば、ダーウィニズムの「ランダムな変異」という前提が反証されるでしょう。また、生物が、その親には先行する適応のない、新しい複雑な適応を持って生まれてくれば、段階的変化の予測が反証され、ダーウィニズムによる知識創造のメカニズムもまた反証されるでしょう。

 

微調整

物理学者のブライドン・カーター(Brandon Carter,1942-)が1974年に行った計算によれば、仮に荷電粒子の相互作用の力が1%小さかったら、惑星は形成されておらず、宇宙には、凝縮した物体は恒星しかなかったことになります。逆に、荷電粒子の相互作用の力が1%大きかったら、恒星は爆発しないので、恒星の外には、水素とヘリウム以外の元素は存在しなかったはずです。どちらの場合にも、複雑な化学反応は起こらないので、生命は存在しません。

カーター以降、ビックバンによる初期宇宙の膨張率など、ほかの物理定数についても、同様の結果が得られてきました。そのほどんどでは、わずかでも値が違えば、生命が存在する可能性はゼロになっていたでしょう。

この注目に値する事実はこれまで、そうした物理定数が超自然的な存在によって意図的に「微調整(finetuning)」されていた、つまり設計されていた証拠としても引き合いに出されてきました。これは新たな創造説であり、目的論的証明ですが、今度は物理法則のなかの「設計らしきもの」を基盤にしています。

第3章で石に刻んだように、問題を避けることはできません。未解決の問題はどんなときでも存在します。しかし問題は解決するものです。偉大な発見があった後でも、あるいはそういうときこそ、科学が進歩を続けるのは、偉大な発見自体が、新たな問題の存在を明らかにするからです。したがって、物理の未解決問題が存在することは、超自然的な説明の証拠にはなりません。それは、未解決犯罪の存在が、幽霊がその犯罪を行ったことの証拠にならないのと同じです。

「微調整」は説明を必要とするという考え方に対するシンプルな反論は、惑星の存在や、化学反応が生命の形成にとって不可欠であることを暗示する良い説明がないことです。

とはいえ、設計らしきものにあたるかどうかには関係なく、「微調整」は次のような理由により、正当かつ重要な科学的問題だと言えます。自然定数は生命を生み出すようにはまったく調整されていないというのが真実であり、その理由が、自然定数にある非常にわずかなずれでも、生命や知性はどうにかして進化できる(ただし環境の種類は大きく異なる)ためだとするならば、このことは自然界における未説明の規則性であり、したがって科学が対処すべき問題なのです。

物理法則は微調整されているように思えますが、本当に微調整されているとしたら、次の二つの可能性があります。その物理法則は現実のなかに(宇宙として)実在化された唯一の物理法則である場合と、別の実在の領域には異なる物理法則が存在する場合です。最初のケースでは、物理法則がなぜ現在の形を取っているのかということへの説明が存在すると考えなければなりません。その説明では、生命の存在に言及することもあれば、しないこともあります。もし言及すれば、私たちはペイリーの問題に立ち返ることになります。つまり、物理法則には生命を生み出すための「設計らしきもの」がありますが、物理法則は進化しなかったということです。あるいは、その説明が生命の存在に言及しないこともあるでしょうが、その場合には、物理法則が現在の形となる理由が生命と無関係であれば、生命を生み出すように物理法則が微調整されている理由は、説明されないままになるでしょう。

一方、いくつもの並行宇宙が存在していて、それぞれに独自の物理法則があり、その法則のほとんどが生命の存在を許していないとすれば、観測された微調整は偏狭な視点の問題でしかないことになります。定数が微調整されているように思えるのはなぜだろうかと考えたりするのは、天体物理学者が存在する宇宙のなかだけです。この種類の説明は「人間原理的推論(anthropic reasoning)」として知られています。しかし、原理は本当は必要ありません。それは単なるロジックです。

しかし、詳しく調べると、人間原理の主張が説明という仕事をやり終えることはないことがわかります。物理学者のデニス・シアマ(Dennis W. Sciama,1926-1999)による議論を考えます。

未来のある時点で、理論家たちが、物理定数の一つに関して、それがどのような範囲の数値を取れば、妥当な確率で(適切な種類の)天文物理学者が登場するようになるだろうかという計算をしたと考えます。その範囲を、たとえば137から138のあいだとします。理論家は、天体物理学者が登場する確率が最大になる値も計算しており、それがこの範囲の中間点、137.5であることがわかりました。

次に、実験家たちがその定数の値を、直接観測します。すると、おかしなことに、その値は135.7にはなりません。その理由は、ダーツで真ん中に刺さると予測するのは間違いであることと同じです。そのためシアマは、私たちがそうした物理定数の一つを測定して、その測定値が天体物理学者を生み出す最適値に非常に近いとわかっても、それは統計学的に反証されるものであって、確証されるものではないと結論付けました。もちろん、そうした値はそれでも偶然の一致なのかもしれませんが、その説明はヒースの荒れ野にあった時計はたまたまその形になっただけかもしれないと言うのと同じです。

シアマの議論は続きます。天体物理学者が登場する定数値がすべて一列に並んでいると想像した場合、人間原理的な説明によって、私たちは測定値が、その中間にも端にも近すぎない、ある典型的な値になると予想します。しかし、説明すべき定数がいくつかあれば、そうした予測は変わってきます。一つの定数がその範囲の端の近くになる可能性は低いものの、定数の数が多いほど、その定数のなかの少なくとも一つが範囲の端の近くになる可能性が高くなるからです。より多くの定数がかかわるほど、天体物理学者ありの典型的な宇宙は、彼らのいない状況に近くなります。関与する定数がどのくらいあるのかはわかっていませんが、数個だと思われるので、人間原理によって選ばれた領域における宇宙の圧倒的大多数は、その端に近いところにあることになります。したがって、人間原理的な説明から予測されるのは、宇宙が天体物理学者を生み出すのはかろうじて可能であることだとシアマは結論しています。これは一個の定数の場合の予測とは、ほぼ正反対の予測です。

一見すると、このことが今度は、別の大きな未解決科学ミステリーを説明しているように見えます。このミステリーは、エンリコ・フェルミ(Enrico Fermi,1901-1954)にちなみ「フェルミ問題」と名付けられた、地球外文明はどこにあるのか、というものです。天体物理学者という現象が私たちの惑星に特有のものと考える必要はなく、同じような条件は、おそらくほかのさまざまな恒星系にも存在しています。それならば、そのなかのいくつかが、同様の結果を生み出さない理由があるでしょうか。 私たちはなぜ、他の文明や探査機、信号を目にしていないのでしょうか。

シアマの主張に照らしてみれば、この問題を解決するように思えるかもしれません。私たちの宇宙の物理定数はかろうじて天体物理学者を生み出せる数値であれば、この天体物理学者を生み出すという出来事が一度しか起こらなかったとしても驚きではありません。

残念ながら、この「微調整」による説明も、悪い説明であることがわかります。基本的な定数に焦点を当てることは偏狭だからです。1.異なる定数をもつ「同じ」物理法則と、2.異なる物理法則 のあいだには、妥当な違いはありません。また、論理的に可能な物理法則は無限に存在します。そうした物理法則がすべて、現実の宇宙において実在化されていたら、私たちの宇宙は、天体物理学者を生み出す宇宙のグループのぎりぎり端にあるのは、統計的に見て確かと言えるでしょう。そうなりえないことは、次のファインマンの主張からわかります。まず、天体物理学者を含む、あらゆる可能な宇宙のグループを考え、そうした宇宙の大多数には、天体物理学者以外に何が含まれているのか考えます。そうした宇宙の圧倒的多数では、天体物理学者の周りには、ほぼランダムな状態というカオスが存在します。ほぼランダムな状態は、間違いなく最も数が多いからです。そこで、どんな時点でもピコ秒後に私たちが殺されると言う理論が立てられますが、その観測は反証されます。そこで、別の同じような理論が立てられます。つまりそれは非常に悪い説明です。

同じことが、かなりの数の定数が関与する、ほかのあらゆる微調整についての、純粋に人間原理的な説明にも当てはまります。そうした説明から予測されるのは、私たちがいるのは、天体物理学者はかろうじて存在したかと思うと、一瞬のうちに存在しなくなるような宇宙である可能性が圧倒的に高いということです。それらは悪い説明です。論理的に可能な物理法則はすべて、宇宙として実在化されるという説は、説明としていっそう深刻な問題を抱えています。そうした無限集合を考える場合、そのなかのいくつに特定の性質があるのか「数える」ための客観的な方法がない場合が多いのです。また、天体物理学者を含んでいる、論理的に可能な宇宙のほとんどは、悪い説明である物理法則に従っています。では、私たちの宇宙も説明不可能だと予測すべきでしょうか。

こうした理由から、人間原理的な推論は、「微調整」とされるものの説明や、そのほかの観測の説明の一部なのかもしれませんが、ともすればあまりにも意図的に見えるために、偶然では説明できないものが観察される理由を、完全に説明することはできません。これが私の結論です。具体的な自然法則の観点からの具体的な説明が必要なのです。

 

なんでも同じようにうまく説明できてしまう説明は、悪い説明である

本章で議論した悪い説明はすべてつながり合っています。人間原理的推論に期待しすぎたり、ラマルク主義の仕組みをじっくり考えすぎると、自然発生に行き着きます。自然発生を真剣に考えすぎれば、創造説に行き着きます。そうなるのは、こうした説明がすべて同じ根本的な問題に対処しており、どれも変更するのが簡単であるからです。それらは互いに、あるいはそれ自体の変種と、簡単に交換できてしまい、説明としては「簡単すぎる」と言えます。なんでも同じようにうまく説明できてしまうのです。しかしネオダーウィニズムは簡単に思いつくものではなく、わずかに変更するのも簡単ではありません。

人間原理的な説明は、目的を持った構造を、選択という一つの行為の観点から説明しようとしています。それは進化とは違い、うまくいきません。微調整というパズルの解法は、私たちが観測したものを具体的に説明することになる説明の観点から得られるでしょう。ジョン・ホイーラーの言葉を借りれば、それは「非常にシンプルなアイデアなので、われわれはみな、これ以外にはありえないと言い出すだろう」ということになります。

生物圏についてのこうした悪い説明、とりわけ創造説は、創造というものを過小評価しています。優れた科学者が重要な発見を完成させた瞬間に超自然的な創造者が宇宙を作ったとしたら、その発見を実際に行ったのはその科学者ではなく、超自然的な存在だったということになります。そうした理論は、科学者の理論の発生の時点で実際に起こった、唯一の創造の存在を否定します。

そして、それは本当に創造です。ある発見が行われる前に、予測的なプロセスによって、その発見の内容や結果を明らかにすることはできません。もしそれができるなら、それこそが発見にあたるからです。つまり、科学的発見というのは、物理法則によって決定されるという事実があるにもかかわらず、完全に予測不可能なのです。ネオダーウィニズムは、ポパーの知識論と同様、実際に創造を記述しています。一方、創造説をはじめとするライバルの理論にはそれができません。

 

用語

進化(ダーウィンによるもの)(Evolution(Darwinian)):交互に起こる変化と選択による、知識の創造

自己複製子(Replicator):それ自身の複製に因果的に寄与している実体

ネオダーウィニズム(Neo-Darwinism):「適者生存」のようなさまざまな誤解のない、自己複製子の理論としてのダーウィニズム

ミーム(Meme):自己複製子であるアイデア

ミーム複合体(Memeplex):互いの複製を手助けする生物の形成。

自然発生(Spontaneous generation):先に存在する非生物からの生物の形成。

ラマルク主義(Lamarckism):生物学的適応は、生物が自らの一生のあいだに獲得し、その後、その子孫に受け継がれる進歩であるという考えにもとづいた、誤った進化理論。

微調整(Fine-tuning):物理定数がわずかに違っていたら、生命は存在しないだろうという考え。

人間原理的説明(Anthropic explanation):「問題の現象が起きる理由を誰かが疑問に思うのは、知性のある観測者がいる宇宙のなかだけである」とする説明。

____________________________

書評など

人間原理は、人類の宇宙でのポジションを理解する方法として一般によく知られていると同時に、哲学的な雰囲気のある話題です。ドイチュは淡々とこれを批判しており、なかなか面白いと思いながら読みました。シアマはドイチュの博士論文の指導教員です。ドイチュの周囲の先鋭による人間原理の議論をさらに突き詰めようという気概を感じる章でもあります。

この章ではドーキンスについても詳しく解説されました。ドイチュはドーキンスの宇宙観については前章では否定的でしたが、ネオダーウィニズムミーム論については、ほぼ彼の議論に沿い、前進を試みています。前著『世界の究極理論は存在するか』の冒頭には以下の一文が添えられています。

カール・ポパー、ヒュー・エヴェレット、アラン・チューリングリチャード・ドーキンスへささげる。本書は彼らのアイデアを真剣に受け取っている。」

実は、大のドーキンス推しなんですね。時計のメタファーは、パスツールが神の存在証明に用いたのを、ドーキンスが『盲目の時計職人』で逆手に取ったものです。同書で解説されている「イタチ・プログラム」は、遺伝子の変異と選択のメカニズムというネオダーウィニズムのアイデアの肝を、プログラムを用いて明快に説明したものです。面白いのでPythonで書き起こしてみました。


Google Colabにも貼りました。環境がなくてもブラウザで動作を確認できます。

 

人間原理という哲学問題へのスタンスも明確です。ドイチュによれば、人間原理はただのロジックであり、説明の一部になり得ることは否定していません(自分もこれは当然だと思います)。しかし、人間原理に人類がいる理由の説明を期待しすぎると、全く筋が悪くなると主張しています。ドイチュ以外でも、無数の物理定数がかかわる超弦理論への批判の一部はそうした形を取っているように見えます。

ピーター・ウォイト著,松浦俊輔訳,『ストリング理論は科学か―現代物理学と数学』(青土社,2007)


参考

パスツールの住んでいた家は現在は公開されており、自然発生説を反証する実験に使われた「パスツール瓶」もオリジナルが残っているようです。

f:id:y_mohrey:20201125133548j:plain

オリジナルのパスツール

  画像:https://coloradorotarygoestofrance.wordpress.com/2011/04/09/la-maison-de-louis-pasteur/ 

 

 

 

『無限の始まり』第3章「われわれは口火だ」 

『無限の始まり』全体目次 第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

 

第1章と2章では、知識の創造の源は良い説明の追求であること、そして説明的知識は修正を加えながら実在に近づくことができるということが示されました。では、こうした知識の創造は無限に続くのでしょうか。あるいは本質的に有限なのでしょうか。第3章では、この疑問に答えながら人類の宇宙的な意味について論じられます。

____________________________

啓蒙運動以前は人間中心的だった

古代の日常的な経験の範囲外にある実在をめぐる記述は、単に間違っているだけでなく、現代の記述とは根本的に異なる特徴が見られます。それは人間中心的であることです。冬の訪れや自然災害などは、宇宙的重要性をもつ存在が人間に対して何らかの意図を抱くことによると説明されました。その後の地球中心説では、人間は宇宙の物理的な中心へと格上げされました。説明の上での人間中心主義と物理的配置の上での人間中心主義は、その妥当性を互いに高め合いました。 啓蒙運動以前は、現代の私たちには想像もできないほど人間中心的だったのです。例外だったのは古代ギリシャの数学者ユークリッドが構築した幾何学体系であり、その考え方は当時の一般的な世界観には影響を与えなかったものの、後の啓蒙運動ではその先駆者らに多くの刺激を与えることになります。

啓蒙運動以降、幾何学だけではなく、私たちは科学のあらゆる基礎領域において、自然の説明を人々の考えや意図といった観点から遠ざけてきました。今では夜空の恒星や惑星のパターンが人間の世界の出来事に影響を与えることはないとわかっています。物理学の知識は、もっぱら素粒子や力、時空といった非人格的な実体の観点から表現されます。そしてその相互作用は自然法則を表す数式で説明されます。

自分の馴染みのある環境や視界のなかの思いがけない出来事(夜空の動きなど)を、観察対象の客観的特徴だと勘違いしたり、経験則を普遍的法則と取り違えるのは、ありがちなことです。私はそうした誤りを偏狭思考と呼ぶことにします。人間中心的な誤りは偏狭思考の良い例でした。

 

反人間中心主義:平凡の原理と宇宙船地球号

人間中心的な理論の放棄は非常に実り多いものであり、反人間中心主義は徐々に、「人間は(宇宙の仕組みのなかでは)重要でない」という普遍的原理へと高められていきました。この普遍的原理は「平凡の原理」とも呼ばれています。

つまり、スティーブン・ホーキングの説くように、人間は「典型的な銀河の外縁部にある、平均的な恒星を回る中規模の惑星の上に生じた化学物質の浮きカスに過ぎない」ということです。

ここでは「宇宙の仕組みのなかでは」というただし書きが必要です。それは、その化学的な「浮きカス」が自らに適用している道徳観などの価値観に照らせば、その浮きカスにも特別な意味があるのは間違いないからです。「平凡の原理」では、こうした価値観自体がすべて人間中心的だとしています。その価値観が説明するのは、「浮きカス」の振る舞いのみであり、それ自体は重要ではないからです。

人間の条件についての影響力の大きなアイデアとしては、ときとして宇宙船地球号というドラマチックな名前で呼ばれるものもあります。地球は、宇宙船の外に広がる厳しい環境から乗組員の豊かな暮らしを守る複雑な生命維持システムであるというものです。そして、この宇宙船の生命維持システムには限度があり、人間の数が非常に大きくなるか、生物圏が「設計上」維持できる生活様式とかけ離れた生活様式を採用してしまえば、生物圏は崩壊するといいます。

宇宙船地球号のメタファーと、「平凡の原理」は、どちらも科学を重視する人々のあいだで広く受け入れられており、自明の理とさえ言われるようになりました。しかし実際には、この二つはやや異なる方向の主張を行っています。平凡の原理は、地球とそこに住む化学的な浮きカスが(何の変哲もないという意味で)いかに普通であるかということを強調しています。一方、「宇宙船地球号」は、地球と浮きカスが(類を見ないほど適合し合っているという意味で)いかに普通でないかということを強調しています。

しかし、この二つのアイデアは哲学的な方法で解釈すれば簡単に収斂します。すなわち、どちらもほぼ同じ偏狭な思考である「われわれが地球での生活で得た経験は宇宙を代表する」、そして「地球は非常に大きくて、変化せず、永久に存在する」という誤解を正すものだと考えられていることです。

平凡の原理と宇宙船地球号のアイデアは、地球が小さく、はかないことを強調します。そしてどちらも人間の傲慢さに対抗しています。平凡の原理は啓蒙運動以前の人間中心主義の傲慢さに対抗しています。一方で、宇宙船地球号のメタファーは世界をコントロールしたいと願う啓蒙運動の傲慢さに対抗しています。どちらの考え方にも、私たちは自らを重要だと考えるべきではないという、道徳的要素があります。そしてどちらも、世界が私たちの略奪行為をいつまでも甘受すると思うべきではないと断言しています。

 

単純な事実として二つのアイデアは間違っている

二つのアイデアを注意深く検討すれば、それぞれ事実として間違っているということがわかります。宇宙にある物質は、その80%が光を放つことも吸収することもできない、目に見えない「暗黒物質」とされています。残りの20%が私たちが偏狭な意味で「通常物質」と呼ぶ類いの物質です。そして、人間や地球、恒星ほど高密度の物質は、必ずしも典型的ではありません。宇宙は大部分が真空状態です。さらに言えば、最も一般的な通常物質の状態はプラズマです。プラズマが存在するのは超高温の恒星内部です。概念上の話として、宇宙空間全体を太陽系の大きさの立方体に分割すると想像します。その一つである、典型的な立方体から観察した場合、その空は真っ黒です。最も近い恒星が超新星爆発した時でさえわずかな光も届きません。典型的な立方体の温度は宇宙背景放射と同じ約2.7ケルビンです。そして、その空間に存在する原子の密度は、1立方メートルあたり1個以下であり、銀河系の恒星間空間にある原子の密度の100万分の1にすぎません。低温で、暗く、何もない、想像を絶するほど荒涼とした環境が、宇宙では典型的なのです。

宇宙では私たちはものの数秒で死んでしまいますが、原始的な状態のオックスフォードシャーイングランド南東部地域)でも、冬であれば数時間のうちに死んでしまう可能性があります。現在のオックスフォードシャーには確かに生命維持装置がありますが、これは生物圏がもたらしたものではありません。衣服、住居、農場、病院、電力網、下水道などから構成されたシステムは、すべて人間が作り上げたものです。想像上の宇宙船に備えられた生命維持システムとは違い、人類進化の地である大地溝帯は捕食者や寄生虫や病原菌が蔓延る過酷な環境でした。地球の生物圏が生物を維持することに「適応しているように見える」理由は、生物圏は個体を放置し、傷付け、障害を与え、殺すこと以外に安定な状況に到達する仕組みを備えていないためです。正味として、地球上にかつて存在した生物の99.9%は現在では絶滅しています。遺伝学的証拠から、私たち人類も一度絶滅をぎりぎりのところで回避したことがわかっています。生物圏は生物種の偉大なる保護者ではありません。また、私たち人類は北極地方やアマゾンのジャングルで生き残る方法を、道具、武器、火、衣服などの知識を、遺伝ではなく文化のなかで伝えることで生き残ってきました。地球は私たちに生き残るための原材料は与えてくれましたが、その原材料を別のものに変換する知識や、まして繁栄のための知識を与えてくれたことは一度もありません。つまり、生物圏には人間の生命を維持する能力がないのです。地球をなんとか人間の住める場所にしたのは人間の知識に他なりません。私たちは「宇宙船」の「乗客」でもなければ「乗務員」でも「整備員」でもありません。私たちは宇宙船を設計し、建造する立場です。その設計が人間によって生み出される前に存在するのは、単なる危険な原材料の山です。

 

道徳的側面からみても二つのアイデアはそれぞれ逆説的だ

平凡の原理は道徳的に逆説的です。あらゆる種類の偏狭な誤解のなかから、人間中心主義だけを特別な非難の対象として選び出しているので、平凡の原理自体が人間中心的だと言えます。そして、人間中心的な論理からは、「化学的な浮きカス」の外の世界の様子については、道徳的に何も言えることがありません。いずれにせよ、人間中心主義の導入は、傲慢さによるものではなく、良い説明を探し求める方法がない中で導入された合理的な説明の方法でした。この点で、人間は傲慢だったのではなく、世界は根本的に理解不可能なものだと決め込んだこと、つまり傲慢さが足りなかったのが問題だったと言えます。

宇宙船地球号のアイデアもまた逆説的です。このメタファーは、かつて人間が何の困難もなく暮らす時代があったことを意味します。生き延びて反映するために、絶え間なく持ち上がる問題を自ら解決する必要がなく、宇宙船の乗客のように、必要なものはすべてあてがわれていた時代ということです。実際は、老人の化石はほとんど見つかっていません。地球は私たちに何も贈り物をしていません。宇宙船地球号のメタファーでは、他のあらゆる生物種は道徳的にプラスの役割が割り当てられているのに対し、人間は唯一、マイナスの役割だとされます。しかし人間は生物圏の一部であり、道徳に反するとされる行動にしても、ほかのあらゆる種が反映の時代に取る行動とまったく同じです。違うのは、人間だけは、そうした反応が自らの子孫やほかの種に与える影響を和らげようとすることです。

 

二つのアイデアは収斂する

平凡の原理に関して、進化生物学者リチャード・ドーキンス(Clinton Richard Dawkins,1941-)による主張について考えます。生物の特性は、環境の中での自然選択によって進化してきました。私たちの感覚が果物の色や匂い、捕食者が立てる音などに気づくように適応しているのはそのためです。そして、私たちは生き残るのに無関係な現象に気づく能力に進化が資源を浪費することはありません。そこでドーキンスは、人間の機能は、人間のサイズ、時間、エネルギーなどに近い規模をもつ、狭いグループの現象に対処するように進化したと言います。つまり、私たちの感覚が、ニュートリノクエーサーを知覚できないのと同じく、私たちがそうした現象を理解できる理由はないはずです。私たちは幸運にもそうした現象を理解できましたが、この先も幸運が続くとは限りません。このドーキンスの結論は、平凡の原理を適用したことによる衝撃的な結論と言えます。科学の進歩は人間の脳の仕組みによって決まる限界を超えられないということです。

ここで、平凡の原理と宇宙船地球号のメタファーは一点に収斂します。両者に共通しているのは、異質で非協調的な宇宙の中に埋め込まれた、人間にとって快適な小さい「泡」の概念です。平凡の原理では、この泡は概念上のものであり、人間が世界を理解する能力に制限を設けています。宇宙船地球号のメタファーでは、それは物理的に存在する泡、生物圏のことです。どちらの泡も、その内部では人間中心主義が真実とされています。つまり、世界には困難なことがなく、ひたすら人間の希望や理解力の通りに動いています。その外側には、解決できない問題ばかりがあるということになります。

世界は説明不可能だという前提はどれも、非常に悪い説明にしかなりません。説明不可能な世界は手品でごまかされている世界と見分けがつきません。さらに言えば、泡の外にある世界は泡の中の世界についての説明に影響を与えるため(そうでなければ泡はなくてもいいことになります)、泡の中の特定の疑問を質問しないように注意して初めて、泡の中の世界が説明可能になります。この考え方は地上と天界を区別していた啓蒙運動以前の知的風景と似ています。

平凡の原理と宇宙船地球号のアイデアはいずれも間違っています。私たちは朝食前に暗唱する価値のある格言として、これらの否定表現を石に刻むべきです。

・人々は、宇宙的な枠組みで重要である。

・地球の生存圏には、人間の生命を維持する能力はない。

 

人々の宇宙的重要性

啓蒙運動以降、テクノロジーの進歩は経験則ではなく説明的知識の創造に頼るようになってきています。人々は何千年ものあいだ、月に行くことを夢見ていましたが、そこに行くために必要なのは力や運動量などの目に見えない実体の振る舞いに関する理論でした。世界を説明することと、世界を制御することの関係は、偶然ではなく、世界の深遠な構造の一部です。物理的対象の変換現象は、決して起こることがない現象(光速を超える速度での通信など)もあれば、自然に起こる現象もあります(恒星の形成など)。あらゆる物理的変換現象は、次のどちらかになります。

自然法則によって禁じられているために不可能である。

・適切な知識があれば、達成可能である。

すべての規則性には本質的に説明があり、その規則性の説明は、自然法則か、自然法則にとって生じた結果です。そのため、自然法則で禁止されていないものはすべて、適切な知識があれば達成可能なのです。

自然は、普遍的法則によってのみ制限されます。これが説明的知識の宇宙的重要性であり、したがって人々の宇宙的重要性です。私は人々を「説明的知識を生み出しうる実体」として定義します。

人間がある環境で、例えば月面で、生きていけるかどうかは人間の生化学的性質には左右されません。月面であっても、空気、水、気温など偏狭なニーズについて、適切な知識があれば、他の資源を変換することによってすべて満たすことができます。私たちは地球を居心地の良い場所であり、月を遠くにある荒涼とした死の世界と考えることに慣れてしまっています。しかし、私たちの祖先は私の住んでいるオックスフォードシャーを同じように見ていたでしょう。人間というユニークなケースにとって、ある環境が居心地が良いか悪いかは、人間がどういった知識を生み出してきたかによって決まります。

知識を利用して自動化された物理学的変換現象を引き起こすこと自体は、人間だけでなくあらゆる生物の基本的な生存のための方法です。人間以外のあらゆる生物は、ある決まった種類の資源から、同じような別の生物をつくり出す工場です。人間の体は、自然法則に許される限りにおいて、あらゆるものをあらゆるものへ変換する工場だと言えます。人間の体は「ユニバーサル・コンストラクター(普遍的な建造者)」なのです。一方で、説明的知識を生み出すことがないサルが生み出せる知識は、基本的に遺伝子の知識と同じ類です。この知識は本質的に限られたリーチしかなく、したがってサルは非常に専門化したコンストラクターです。類人猿についてはドーキンスらの主張は妥当です。世界は類人猿が想像ができないほど風変わりです。

 

人間のリーチ

宇宙の一部の環境では、人間が繁栄するための一番効率的な方法は、自らの遺伝子を改変することかもしれません。一部の人間中心的な間違いをした人々は、遺伝子操作された人間はもはや人間ではないと反対しますが、人間に関して一意的に重要なものは、新しい説明を生み出す能力だけであり、あらゆる人々がその能力を同じように持っています。生活の改善などのために遺伝子を操作することは、自分の肌の機能を衣服で補ったり、眼の機能を望遠鏡で高めることと変わりありません。ユニバーサル・コンストラクターという人間の能力を考えれば、片方の手に親指が向かい合っていることや、脳の大きさは、ビタミンCの入手と同じくらい、意味のない話です。

天体物理学者のマーティン・リース(Martin Rees,1942-)は、宇宙のどこかに「われわれには想像できないような形態の生命や知性が存在するはずだ。チンパンジーには量子論を理解できないのと同じで、それは、われわれの脳の能力を超えた実在の側面として存在する」と推測しています。しかしそのようなことはありません。そこで問題とされている「能力」が計算速度や記憶容量のことであれば、私たちはコンピューターの助けを借りて問題とされている側面を理解することができます。しかし、ほかの形をとる知性に理解できることを私たちが定性的に不可能かもしれないという主張だとしたら、これは単に、世界が説明不可能であるということを再び主張しているだけです。

つまり、人間のリーチは、説明的知識のリーチと基本的に同じものです。環境の中に制限のない一連の説明的知識を生み出すことが可能なら、その環境は人間のリーチの中にあります。適切な種類の知識が、そうした環境の中で、適切な物理的対象として実在化されれば、その知識は生き延び、無限に増殖するでしょう。こうした環境は存在するのでしょうか? これは基本的には、「この創造性は無限に続くことができるのだろうか?」という前章での質問と同じであり、宇宙船地球号のメタファーが否定の答えを想定している質問です。

 

知識創造の3条件

この問題は、次のような質問に帰着します。そうした環境が存在しうるなら、そこで最低限必要とされるのは、どのような物理的特徴でしょうか?

物質が手に入ることが一つです。テクノロジーがどれだけ進んでいても、目的の物質を得るのに何らかの材料は必要です。制限のない一連の説明的知識を生み出すには、継続的な質量の供給が必要です。

また必要な変換の多く—推量や科学実験や製造プロセスなど—にはエネルギーが求められます。質量とエネルギーはある程度は互いに変換可能です。

物質とエネルギーに加えて、基本的に必要なものがもう一つあります。科学理論をテストするのに必要な情報、すなわち証拠です。地球の表面には豊富に証拠があります。空からの光という証拠は、何十億年も前から地球の表面にあふれていましたし、今後、何十億年経っても変わらないでしょう。私たちはそうした証拠をやっと調べ始めたところです。同じことは月にも当てはまります。月には質量、エネルギー、証拠といった、地球と基本的に同じ資源があります。

人間はユニバーサル・コンストラクターなので、資源の発見や変換といった問題はいずれも、与えられた環境での知識創造を制限する、一時的な要因にすぎません。したがって、物質、エネルギー、証拠の三つが、ある環境が制限のない知識創造の場となるために必要とされる、唯一の条件です。

 

問題は解決できる

具体的な問題はどれも一時的な要因ですが、生き延びて知識を創造し続けるためには問題を解決する必要があるという条件は永続的なものです。過去、人間には何の困難もない時代は一度もありませんでした。これは将来も同じです。数十年というスケールで見ると、私たちは、生物圏を大幅に改変するか、そのままで維持するか、あるいはそのあいだを取るかという選択に直面しています。どの選択肢を選んでも、惑星全体を制御するプロジェクトになり、大量の科学的・技術的知識だけでなく、どの選択肢を選ぶかという決断を合理的に行う方法に関する知識も創造する必要があります。さらに長期的に見れば、問題になるのは、人間の快適さや芸術的な感受性、そして個人の苦しみだけではありません。いつものごとく、人間という種の存亡も問題になります。例えば、大きな彗星や小惑星の地球への衝突は、今あるよりもずっと多くの科学的・技術的知識を創造しない限り、防御手段を持ち得ません。そして、月や太陽系のほかの場所、最終的にはほかの恒星系に、自給自足できる入植地を広げることが、種の絶滅や文明の破壊に対する有効な防衛手段になるでしょう。しかし、それさえ、困難のない状況には程遠いのです。ほとんどの人は種の生き残りを確信するだけでなく、個人として生き残りたいと考えています。実際、人々はどんなときも現在ある以上のものを求めるのでしょう。つまり、進歩したいと考えるのです。それは、脅威に加えて、良い意味での問題がいつでも存在するからです。その問題とは、私たちの知識に誤りやギャップ、矛盾、不足があることで、私たちはそれを解決したいと考えます。困難のない状況は好ましい状況であるとする説は誤解です。何の困難もない状況というのは、創造的な思考のない状況であり、またの名を死といいます。

問題が枯渇することはありません。説明が深いほど、新たな問題をより多く生み出すためです。それは科学のみならず道徳哲学についても成り立ちます。ユートピアは実現不可能ですが、それは単に、私たちの価値や目的は無限に向上し続けられるからです。

そうなると、私が石に刻むべきだと提案した、「地球の生物圏には、人間の生命を維持する能力はない」という格言は、実際には、人々にとって、「問題は避けられないものだ」という、はるかに一般的な真理のなかの、特殊なケースだと言えます。

私たちが問題に直面することは避けられません。しかし、特定の問題を避けられないのではありません。私たちは問題を解決することで生き延び、成長します。自然を変えるという人間の能力は物理法則にしか制限されません。つまり、人々と現実世界に関する、補完的で、同様に重要な真理が、「問題は解決できる」ということです。ここで解決できるというのは、適切な知識が問題を解決するという意味です。もちろん、望んだだけで知識が手に入るわけではありません。しかし原理的には知識は手に届くところにあります。二つの言葉を石に刻みましょう。

【問題は避けられない】

【問題は解決できる】

進歩は可能であり、かつ望ましいというのは、啓蒙運動の中心をなすアイデアです。進歩は、あらゆる批判の伝統と同時に、良い説明を追求するという原則の動機となります。しかし進歩にはほぼ正反対の二通りの解釈があります。紛らわしいことにどちらも「完全性(perfectibility)」と呼ばれています。一つは、仏教やヒンドゥー教の「涅槃」やさまざまな政治的ユートピアのような、完全とされる状態に達することができるという考え方です。もう一つは、あらゆる到達可能な状態は、無限に高められるという考え方です。可謬主義の立場によれば後者が支持されます。人間の進歩と完全性をめぐる、これら二つの解釈は、歴史的に啓蒙運動の二つの大きな潮流、イギリス啓蒙運動と「ヨーロッパの啓蒙運動」に刺激を与えてきました。二つの流派は、権威の否定という特性では共通していますが、重要な点で異なります。

ヨーロッパの啓蒙運動は、問題が解決可能であることは理解していましたが、問題が不可避であることは理解していませんでした。ヨーロッパの啓蒙運動は、それゆえ、知識の面でのドグマティズムや、政治的暴力、新しい形の専制政治へとつながりました。1789年のフランス革命とそれに続く恐怖政治はその典型的な例です。

一方、イギリス啓蒙運動は漸進的であり、人間の可謬性を認識していたため、ゆるやかで継続的な変化を妨げないような制度を求めていました。同時に、将来的に制限を受けない、小さな改善を行うことにも熱心でした。この取り組みが、進歩の追求において功を奏したのだと考えています。本書で「啓蒙運動」という場合には、イギリス啓蒙運動を意味します。

 

人間の究極的なリーチ

人間の(あるいは人々や、進歩の)究極的なリーチを調べるには、地球や月といった、資源が非常に豊かな場所を考えるべきではありません。そこで、前に議論した典型的な場所、銀河間空間へ戻ります。ここでは物質、エネルギー、証拠の3要素の供給は最小限です。鉱物の豊かな供給も、頭上からエネルギーをただで届けてくれる巨大な核融合炉もありません。自然法則の証拠を提供してくれる、空の光や、さまざまな局地的な現象もありません。そこは何もなくて、冷たく、暗い場所です。

本当に何もないのでしょうか?実際のところ、それもまた別の偏狭な誤解です。銀河間空間を太陽系サイズの立方体に分ければ、それぞれの立方体は10億トン以上の物質を含んでいます。そのほとんどは電離水素です。10億トンというのは、例えば制限のない一連の知識を創造する科学者のための宇宙ステーションや入植地を建設するには、十分すぎるほどの量です。仮にその方法を知っている人がいればの話ですが。

現在、その方法を知っている人間はいません。水素からほかの元素への変換を産業規模で行う方法は、現在は知られていません。しかし物理学者は、そうした元素変換を禁止する物理法則はないと確信しています。

温度の低さと、利用できるエネルギーがないという問題はどうでしょうか?水素の元素変換によって、核融合エネルギーを取り出せます。これはエネルギー供給としては相当多く、地球上のすべての人が毎日消費する総電力量を超える規模です。つまり、この立方体の中には、偏狭な第一印象が示すほど、資源が不足しているわけではないのです。

宇宙ステーションに不可欠な証拠の供給は、どのように行われるでしょうか。科学実験室は、元素変換によって作られる元素で建設可能です。また、化学の発見も元素変換で重要ではなくなります。生物学の現地調査は難しいものの、人工の生態系の中で、任意の生命体を作り出し、研究することができます。仮想現実空間でのシミュレーションも可能です。10億トンの物質を除いても、その立方体には微かな光が満ちています。光の中には圧倒的な量の証拠が存在し、最も近くにある何個かの銀河の中のあらゆる恒星や惑星、衛星の分布図を、10キロメートルの精度で描くのに十分なほどです。そうした証拠すべてを取り出すために使う望遠鏡には、その立方体自体と同じ幅をもつ、反射鏡のようなものが必要になるでしょう。その鏡には、少なくとも惑星を一つ作るのと同じくらいの物質が要求されます。しかしそれでさえ、私たちが考えるテクノロジーのレベルを前提とすれば、可能性の範囲を超えるものではありません。ほんの数百万トンレベルの望遠鏡でも、かなりの天体観測ができます。いかなるときでも、典型的な一個の立方体には、1兆個以上の恒星とその惑星についての詳細な証拠が同時に存在するのです。

宇宙は証拠に満ちているだけでなく、宇宙のどこでも同じ証拠が満ちています。宇宙のあらゆる人々は、偏狭な障害から自由になることを十分に理解してしまえば、基本的には同じ機会を得られます。これは現実世界における基本的な均一性であり、私たちの環境と典型的な環境のあいだのあらゆる相違点よりも重要です。

宇宙の中の典型的な場所というのは、制限のない知識の創造に適した場所です。したがって、ほかのほとんどの環境にも同じことが言えます。そういった環境には、銀河間空間よりも多くの物質やエネルギーがあり、証拠が入手しやすいからです。クエーサーのジェットの内側では知識の創造を認めないかもしれませんが、宇宙全体として見れば、知識に対して親和的なのは、例外的ではなく、普通の状態です。すなわち、関連する知識をもつ人にとっては親和的だというのが普通の状態なのです。知識をもたない人を待っているのは死です。こうした普通の状態こそが、私たちの起源である大地溝帯に広まり、広がり続けています。

奇妙な話ですが、私たちの思考実験に登場した空想的な宇宙ステーションというのは、宇宙船地球号のメタファーに出てくる「宇宙船地球号」にほかなりません。ただし異なるのは、その住人は決してそれを改善しないという非現実的な前提を、私たちは除外している点です。そのため、宇宙ステーションの住人はおそらく、死をいかに免れるかという問題をずっと以前に解決しているので、「世代」はその宇宙船の仕組みとして不可欠なものではなくなっています。改めて考えると、人間が生きていく環境ははかなく、生物圏からの支えに依存しているという主張を劇的に表すには、世代宇宙船という考え方はあまりよくない選択肢でした。こうした主張は、宇宙船がもつ可能性と矛盾するからです。宇宙空間を進む宇宙船のなかでいつまでも暮らすことが可能であれば、その同じテクノロジーを使って地球の上に住むことの方がはるかに可能性が高いはずです。生物圏が破壊されていようといまいと、実際にはほとんど違いはありません。生物圏がほかの種を支えられるかどうかとは関係なく、人間を含む人々は、適切な知識があれば、生物圏に住むことができます。

 

宇宙的な枠組みにおける知識の重要性、人々の重要性

人々よりも明らかに重要なものは数多くあるように思えます。時空はほかの物理現象の説明のほぼすべてに出てくるので、重要です。電子と原子も同様です。そうした地位の高い仲間の中に、人間の居場所はなさそうです。人間の歴史や政治、科学、芸術、哲学、野心や価値観はすべて、数十億年前の超新星爆発の副次的影響であって、さらに言えば、別の超新星爆発により明日にでも消滅してしまう可能性があります。その超新星も、宇宙的枠組みのなかでは程々に重要といった程度です。それでも、人々や知識についてまったく触れなくても、超新星や、ほかのほぼすべてのものについて説明できるように思えます。

しかしこれはまた別の偏狭な誤解にすぎません。長期的に見れば、人間はほかの惑星に移住するかもしれませんし、知識を増やすことでこれまで以上に強力な物理プロセスを制御するようになるかもしれません。爆発の可能性のある恒星の近くに住む人々は、その恒星から物質をある程度取り除くことで、爆発を防ぎたいと考えるでしょう。これは適切な知識があれば達成可能です。おそらく、宇宙のほかの場所にいるエンジニアはすでに、そうした作業をごく普通に行っているでしょう。それゆえ、超新星の特徴が一概に、人々の存在や不在、あるいはそうした人々の知識や意図と独立であるというのは事実ではありません。

一般的に見れば、ある恒星が今後どうなるか予測するには、その恒星の近くに人がいるかどうか、もしいるならば、彼らがどのような知識をもち、何を達成したいと思っているのかを推測する必要があります。宇宙という現実世界に存在するものについての説明はすべて、非明示的であっても、知識と人々について言及しているのです。

知識のもつ意味合いはさらに深いものです。知識なくして、シリコンチップは作れません。恒星は自然に生まれますが、知識を使えば、その恒星をマイクロチップに変換できます。絶対零度100万分の1度に冷えるメカニズムを説明するには、人々の関与について詳しく説明しないわけにはいきません。自然に起こる変換のグループは、知的生命体によって人工的に生じさせるグループより、無視できるほど小さいのです。

それだけではありません。クエーサーが発生すると、数十億年後には、どういうわけか宇宙の反対側で、化学的な浮きカスがそのジェットの振る舞いを予測し、その理由を理解できるようになっています。それは、一つの天文学者の脳という物理的システムのなかに、ジェットという別の物理システムの正確な模型が入っていることを意味します。そこには、同じ数学的関係性と因果構造を具現化する、説明的理論が含まれています。それが科学的知識です。さらには、一方の構造が他方の構造にどのくらい似ているかという忠実度は、どんどん高まっていきます。それが知識の創造です。自然に発生するあらゆる物理プロセスのうち、そうした基本的な均一性を示すのは知識の創造だけです。

f:id:y_mohrey:20201122025428j:plain

1963年から稼働しているアレシボ天文台は、このブログを書いている間に廃止解体が決定された。2016年に中国貴州省で稼働した球面電波望遠鏡アレシボ天文台よりさらに大きい。

プエルトリコのアレシボには巨大な電波望遠鏡があります。この望遠鏡のさまざまな用途のうちの一つは、「地球外知的生命体探査(SETI)」プロジェクトです。これは地球外文明によって送信された電波を検知するというミッションです。SETIの観測装置は、遠く離れた恒星の軌道を回る惑星にある微妙な化学的性質という、今まで一度も検出されたことのない現象を検出することに適応しています。生物進化は、そうした適応を生み出せていません。これは非説明的知識が普遍的にはなりえない理由を示しています。非説明的なシステムでは、説明的な推量が超えている概念のギャップを超えて、未経験の証拠や存在しない現象に関与することは不可能です。

人間や人々、知識は、客観的に重要というだけではなく、本質的に飛び抜けて重要な現象だということになります。

 

スパーク

最後に、環境の自発的な振る舞い(知識がない状況)と、適切な種類の知識がごくわずかに届いた後のその環境の振る舞いの間にある、大きな違いについて考えます。私たちは普通、月面基地を、自給自足の状態になった後でも、地球上に由来するものと考えます。しかし、物質は長期的にはすべて月由来になりますし、エネルギーは太陽に由来しています。月面にある知識の一部だけが、地球から来たものです。仮説として、月面基地が完全に孤立しているケースであれば、地球由来の知識の割合は急激に少なくなるでしょう。月に変化を起こしたのは、物質そのものではなく、それがコード化していた知識です。そうした知識に反応して、月の物質は自らを、新しく、ますます広範囲で複雑な方法で組織し直し、以前よりも良い説明を絶え間なく作り出すようになりました。無限の始まりです。

同様に、銀河間空間の思考実験では、私たちは典型的な立方体空間に「準備をしておく」ことを想定しました。その結果、どんなときでも、銀河間空間自体が前よりも良い説明を次々と作り出すようになりました。変換された立方体は、その質量が一点に集まり、質量をエネルギーに変換しています。そこには多くの証拠がありますが、そのほとんどは立方体のなかで生み出されたものです。変換された立方体は急速に変化します。何より、変換された立方体は誤りを修正します。

とはいうものの、ほとんどの環境はまだ、どんな知識も創造していないように見えます。私たちは、地球とその近傍を除き、知識を創造している環境を知りません。私たちが目にするほかの場所の状況は、知識の創造が広まった場合に予想される状況とは大きく異なっています。しかし宇宙はまだ若いです。現在何も創造されていない環境でも、将来はそうするかもしれません。遠い未来に典型的なものが、現在典型的なものとは大きく異なる可能性もあります。

宇宙では想像もつかないほど数多くの環境が、何十億年ものあいだ、全く何もせずに、あるいは証拠をやみくもに生み出して蓄積したり、あるいは宇宙空間に吐き出したりしながら、まるで口火(スパーク)を待つ爆薬のように、じっと待ち構えています。そうした環境のほとんどが、適切な知識が到達すれば、全く異なる種類の物理的活動、つまり激しい知識創造をいきなり始め、元の状態に戻ることはなくなります。その環境は、自然法則に内在する、あらゆる種類の複雑性や普遍性、リーチを示すとともに、現在典型的なものから、将来典型的になりえるものへと変化します。望みさえすれば、私たちがその口火になることも可能なのです。

 

用語解説

人(人々,Person):説明的知識を生み出すことのできる実体。

人間中心主義(Anthropocentric):人間あるいは人々を中心に考えること。

基本的または重要な現象(Fundamental or significant phenomenon):多くの現象の説明において必要な役割を担う現象。またはその独特の特徴が、基本的理論の観点からみて独特の説明を必要とする現象。

平凡の原理(Principle of Mediocrity):「人間は重要ではない」とする考え方。

偏狭思考(Parochialism):見かけを現実と混同したり、局所的な規則性を普遍的な法則と混同すること。

宇宙船地球号(Spaceship Earth):「生物圏は人間の生命維持装置だ」という考え方。

コンストラクター(Constructor):それ自体は正味の変化をまったく被ることなしに、ほかの物体にさまざまな変換を起こすことのできる装置。

ユニバーサル・コンストラクター(普遍的な建設者,Universal constructor):適切な情報があれば、あらゆる原材料に、物理的にあらゆる変換を引き起こせるコンストラクター

____________________________

 

書評

本章の中でのドーキンス批判は、おそらく2005年TED Globalでの講演がもとになっているのではないかと思います。二人の講演はいずれも見応えがあります。順番にどうぞ。

 
 R.ドーキンスの講演

 

その後登壇したドイチュの講演

 

このドイチュの講演内容は本章での議論そのものです。

 2018年には上のインタビューを踏まえてさらに掘り下げた議論がなされています。

 ドイチュはこのインタビューのなかで

「140億年間、宇宙は退屈な物理現象の繰り返しでした。ここでは大きいものが小さいものにほぼ一方的に影響を与えます。そして、最近になり、相転移(phase change)が起こり、創造性が生まれました。 相転移の後は、小さなものが大きなものに影響を与えるようになりました。決定的な要因は力、質量、エネルギーではなく、情報です。さらに言えば、物理的な因果関係をもつ情報、すなわち知識です。」 

と述べます。知識の定義は現在のところ、これが最も良いと思います。本章で詳説されたコンストラクターという単語は「コンストラクター理論」でのそれと同じ意味でしょう。

『無限の始まり』第2章「実在に近づく」

『無限の始まり』全体目次
第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

 

この章は全体の中で最も短く、原書では8ページです。一章として独立させているのは、理論と実在の関係の説明がとりわけ重要だと考えてのことでしょう。ドイチュは大学院生時代の銀河観測の体験を綴りながら、「科学研究はほとんど知性を必要としない労役だ」といった評判を否定し、研究者と実在の関係について説きます。

____________________________ 

 

 

努力とひらめき

天文学者たちは比較的最近まで、銀河団を顕微鏡越しに観測してました。こうしたガラス乾板では、恒星や銀河は黒い形に、背景の宇宙空間は白く写っています。

f:id:y_mohrey:20201118151151j:plain

ガラス乾板のイメージ。写真は1980年にラスカンパナス天文台で撮影されたもの。 http://nautil.us/issue/32/space/these-astronomical-glass-plates-made-history

このぼやけた物体は銀河です。一方、輪郭のはっきりした点は銀河系内にある恒星で、銀河よりも何千倍も近い距離にあります。この仕分け作業は見かけよりも難しいものです。輪郭がはっきりしていない銀河などは、周縁部がどのくらいぼやけているかといったことに注意を払う必要があります。研究者は経験則でこの作業をしていました。そうした作業は現在ではコンピュータープログラムに置き換えられています。

研究者はガラス乾板をカタログ化しながら、その銀河の一つについて考えをめぐらせ、その作業でしか感じることのない奇抜なアイデアを思い浮かべることもあるでしょう。同じ作業をコンピューターが行う中では、新しいアイデアは生まれません。言い換えれば、コンピューターが何も考えずに作業を行えるからといって、その作業を科学者が行う場合にも何も考えていないということにはなりません。

トーマス・エジソン(Thomas Alva Edison,1847-1931)は「私の発明には偶然生まれたものはない。満たす価値がある必要性を見出したら、私はそれが実現できるまで何回も実験を繰り返す。つまるところ、1パーセントのひらめきと99パーセントの努力なのだ」と言いましたが、彼は自らの体験を誤解しています。天体カタログを作り暗黒物質の存在を証明した天文研究者も、実験を繰り返して世紀の発明に至ったエジソンも、発見の「努力」の段階を、何も考えずに行っていたはずがありません。コンピューターとは異なり、人間は創造的で楽しい思考という方法を用います。

 

理論と実在

ガラス乾板の、非常に小さな感光剤のしみを通して、天体研究者は何を見ているのでしょうか。

私たちは銀河団のある方向の夜空をただ見上げただけでは何も見えません。望遠鏡、カメラ、写真を現像する暗室、乾板の写しを作る別のカメラ、乾板を運ぶトラック、そして顕微鏡を通すことで、私たちは銀河団を見ることができました。最近の天文学者は望遠鏡を覗くことはほとんどありません。観測機器が検出するのは目に見えない電磁波のシグナルであり、これはデジタル化されたのちコンピューターによる処理と分析がかけられます。これがグラフや図となり、天文学者の感覚に影響を与えます。日常生活から遠く離れた現象の理解が進むほど、物理的な隔絶の層は増え、結果として認知したものと実在とを関連づけるための高いレベルの理論と解釈の鎖が必要となります。

科学が出した結論は長い時間をかけて実在により忠実なものになってきました。科学による良い説明の探求は、誤りを修正し、偏見や誤解を招きやすい観点を考慮に入れ、そのギャップを埋めます。科学的な真実は、このような理論と物理的実在の対応によって構成されているのです。

天体望遠鏡に限らず、粒子加速器電子顕微鏡など、すべての観測機器は物質の配置としてはまれな状態で、かつ脆弱です。説明的理論は、私たちに、奇跡をきちんと起こせるような、科学機器の製作と操作の方法を教えてくれます。それは奇術を逆にしたようなもので、私たちの感覚は科学機器にだまされて、実際にそこにあるものを見るのです。人間は触れられるほど近くにある人工物に目を向けています。しかし、その理性は、何光年も離れたところにある、異質な物体やプロセスに向けられています。天体研究者は、本当に銀河を見ているのです。

____________________________ 

 

書評

科学機器の役割にも着目し、科学の有り様を説いた科学哲学としてはラトゥールによる議論が有名ですが、ドイチュの議論を踏まえてラトゥールに戻ると、その議論が支離滅裂だとはっきりわかります。

ラトゥールは、「科学の予言が実現しなかった」ケースが、「そのネットワークに穴が空いて駄目になった」ためだと主張します。

テクノサイエンスのもつ予言可能という性格は、ネットワークをさらに拡大する能力に完全に依存している。外部と実際に遭遇するやいなや、全くの混沌が生じる…この依存性と脆さは科学の観察者には感じられない。なぜなら、「普遍性」が物理学や生物学や数学の法則を「原理的には」いたるところに適用可能だとしているからである。「実際は」まったく違う。ボーイング747は原理的にはどこにでも着陸できると言えるだろう。しかし、実際にニューヨークの五番街に着陸させようとしてみよ。電話は原理的には普遍的につながっていると言えるだろう。サンディエゴにいる誰かに、ケニアの真ん中にいる実際は電話をもっていない人に電話をかけさせてみよ。オームの法則は原理的に普遍的に適用可能であると主張することは大変理にかなっている。電圧計と電力計と電流計なしに実際に証明してみよ…

ブルーノ・ラトゥール『科学が作られているとき』

 

ある説明がどのようなリーチを持つのかは、その説明の内容で決まります。ボーイング747と電話の例を持ち出して「普遍性が許されるのはネットワークの内部のみ」であると主張するのは、説明を一切拒否した上で成り立つ議論ですよね。「オームの法則を科学機器なしに証明してみよ」という要求に至っては実在論を否定することで生まれる発想だとしか理解できません。物理法則は普遍です。

『無限の始まり』第1章「説明のリーチ」

『無限の始まり』要約記事 全体目次 第1章「説明のリーチ」(The Reach of Explanations)
第2章「実在に近づく」(Closer to Reality)
第3章「われわれは口火だ」(The Spark)
第4章「進化と創造」(Creation)
第5章「抽象概念とは何か」(The Reality of Abstractions)
第6章「普遍性への飛躍」(The Jump to Universality)
第7章「人工創造力」(Artificial Creativity)
第8章「無限を望む窓」(A Window in Infinity)
第9章「楽観主義(悲観主義の終焉)」(Optimism)
第10章「ソクラテスの見た夢」(A Dream of Socrates)
第11章「多宇宙」(The Multiverse)
第12章「悪い哲学、悪い科学」(A Physicist's History of Bad Philosophy)
第13章「選択と意思決定」(Choices)
第14章「花はなぜ美しいのか」(Why are Flowers Beautiful?)
第15章「文化の進化」(The Evolution of Culture)
第16章「創造力の進化」(The Evolution of Creativity)
第17章「持続不可能(「見せかけの持続可能性」の拒否)」(Unsustainable)
第18章「始まり」(The Beginning)

私たちの知識が何に由来するのか、という問題は知識論という分野のテーマです。ドイチュはポパーの議論を踏襲し、科学の方法論に関する説明をさらに改良しています。ポパーはテスト可能性を「境界設定基準」としています。ドイチュはそれだけでは不十分であるとし、「説明」こそが重要だと説きます。

なお、上の目次の英語部分は原書のものです。一部、原書のタイトルのままの方がわかりやすいと思ったので、掲載しました。

____________________________ 

 

知識の由来についての議論の始まり—経験論

科学の歴史の大半において、科学理論は、私たちが自らの感覚という証拠から「導き出して」いるという誤った理解がなされてきました。ジョン・ロック(John Locke,1632-1704)は「心は『白紙』のようなもので、感覚的経験はそこに書き込まれていき、そこからわれわれは現実世界に関するあらゆる知識を導き出す」と主張しました(『人間知性論』(1689)での議論)。そうした哲学上の学説は「経験論」として知られています。しかし現実には、科学理論は何かから「導き出される」のではありません。私たちが自然から「読み取る」ことも、自然が私たちに「書き込む」こともありません。科学理論は、大胆な推量に他なりません。既存のアイデアをより良いものにしようという意図をもち、人間の心がそれらを整理し直し、組み合わせ、変更し、追加することによって、科学理論は生み出されます。経験は必要ですが、その主な用途はすでに推測されている複数の理論のなかから選択することです。科学理論は推測であり、経験は複数の競合理論から選択する上で意味をもつという事実は、20世紀中ごろにカール・ポパー(Karl Raimund Popper, 1902-1994)の研究が世に出るまでは正しく理解されていませんでした。

歴史的には、私たちが知るような実験科学をはじめて弁護したのは経験論でした。経験論の立場を取る哲学者たちは、聖職者や学者といった人間や宗教聖典などの古代の書物といった権威に服従することを拒否しました。また、伝承や不正確な経験則、聞き伝えを信じるといった、伝統的な知識獲得方法も否定しました。経験論はまた、「感覚は誤りの源なので無視するべき」という根深い考え方も否定しました。経験論者は新しい知識を得る方向性を志向していました。これは、あらゆる重要なことはすべて決まっていると考える中世の運命論とは対照的です。

経験論は、科学的知識の起源については間違っていましたが、哲学と科学史における偉大な一歩でした。

 

経験論の論理付けの試み、その失敗

しかし、経験論者は「経験したことがないものについての知識を、経験したことがあるものについての知識からいったいどうやって”導き出せる”のか?」という懐疑的な人々からの指摘には十分に答えられませんでした。一般通念としては「繰り返し」が重視されてきました。これによれば、私たちは「同じ状況にあればかならず、その経験をする、あるいはおそらくする」という理論を「導き出す」とされています。したがって、人は過去の経験や出来事から、未来に関するより信頼性の高い知識を得られる、つまり、個別の知識から、一般的な知識を得られるといいます。このようなプロセスは「帰納的推論」あるいは「帰納法」とよばれます。科学理論とは帰納法で得られると主張する学説は、帰納主義とよばれます。

帰納主義者の一部は、その論理の飛躍を埋めるために、「帰納原理」が存在すると主張します。帰納原理として有名なのは「未来は過去に似ている」というものです。また「遠くは近くに似ている」「見えないものは見えるものに似ている」という言い方もあります。実験から科学理論を得るのに実際に役立つ「帰納原理」を打ち立てた人はいません。歴史的には、帰納主義に対する批判は、そうした原理が打ち立てられないことに向けられてきました。しかし、そうした批判のやり方は帰納主義を甘やかしています。帰納原理を打ち立てることはできません。

天体物理学が対象とするのは、私たちが空を見たときに見えるもの、ではなく、恒星とは何か、つまりその組成、光り輝く理由、形成プロセス、そして恒星形成の原因となる普遍的な物理法則です。そのほとんどは、これまでに観測されたことはありません。物事がどのように見えるかという予測は、物事がどのような状態にあるかという説明から導き出されます。そのため帰納主義では、私たちがどのようにして恒星や宇宙が何であるかを理解し、それが単なる空の点とは違うと知っているのかという問題にすら答えられません。

帰納主義の原理と目されている「未来は過去に似ている」あるいはそれと類似の主張もまた、間違っています。現実には、未来は過去に似ていません。見えないものは見えるものとはかなり違います。科学は、それまでに経験されたことのない現象を予測します。たとえば1945年以前には核分裂による爆発を見た人はいませんでした。しかし核分裂による爆発と、その起爆条件は正確に予測されていました。

帰納主義は誤りです。そして、帰納主義が誤りであれば、経験論も誤りであるはずです。

 

経験論は偽りの権威を生み出した

経験論は、伝統的権威を排しました。しかし、科学を権威から開放するという目的を達成することはありませんでした。経験論は二つの偽りの権威を打ち立ててしまっています。一つは感覚的経験、もう一つは、経験から理論を抽出するために用いることを想定した、帰納法などの「導出プロセス」です。

知識が信頼できるものであるためには権威が必要だという考え方は、いまだに広く行き渡っています。知識論の授業の多くでは、知識とは「正当化された真なる信念」だと教えています。ここで「正当化された」というのはある種の権威筋あるいは知識の基準に照らしたうえで「真である」と見なされるという意味です。そうなると「われわれはどうやって〜を知るのか」という疑問は「どの権威に照らしたうえで、われわれは〜と主張するのか?」と変形されます。この形の疑問は、他のどんなアイデアよりも、多くの哲学者の時間と労力を浪費してきました。それは、真実の探求を、確かさ(これは感情の問題)の探求、あるいは承認(社会的地位)の探求へと変えてしまいます。この誤解は「正当化主義」と呼ばれます。

一方で、権威ある知識の源も存在しないし、アイデアが真である、または確からしいと正当化するための信頼しうる手段も存在しないという認識は「可謬主義」と呼ばれます。可謬主義者は、自分たちの最善かつ最も基本的な説明にさえ、真実だけでなく、誤解が含まれていると考えます。そして、そうした説明を良い方向へ変えようと努力する傾向にあります。
可謬主義の論理は、過去の誤解を修正しようとするだけでなく、現在は誰も疑問に感じていない、あるいは問題だと気づいていないけれども実際には誤ったアイデアを、将来的に発見して、変えたいと考えることです。限りない知識の成長の開始、すなわち無限の始まりにとっては、単なる権威の否定ではなく、可謬主義が不可欠なのです。

 

鍵は「権威への抵抗」か?

私たちの祖先は夜空を見上げ、星と私たちの関係を理解したいと考えたことでしょう。また、暮らしのあらゆる側面において進歩する方法を知りたいとも考えたでしょう。場合によっては、そうした宇宙レベルの基本的現象と実用レベルの進歩に関係があることに気付くこともあり、そうした中で私たちの祖先は神話を作りました。しかし、その内容は真実には似ていません。私たちの祖先は、進歩するために知識を創造したいと考えたものの、方法がわからなかったのです。

その時代が、人類の先史時代のごくはじめから数世紀前まで続きました。その後、新しくて力強い発見と説明の様式が登場し、後に「科学」と呼ばれるようになります。科学の登場は「科学革命」と呼ばれます。科学は著しい速度で知識を創造することにほぼ即座に成功し、その速度は加速し続けています。

科学革命以前には失敗していた現実世界の理解に、科学が効果的だったのはなぜでしょうか。この時代にはじめて行われたことで、効果を生み出したのは何だったのでしょうか。 この疑問に対する答えは多く出されましたが、これまでにこの問題の核心に届いているものはありませんでした。

科学革命は、「啓蒙運動」という、より幅広い知的革命の一部でした。この啓蒙運動は他の分野、とりわけ倫理学と政治哲学、社会制度において顕著な影響を及ぼしました。「啓蒙運動」は学者によってさまざまに解釈されましたが、いくつかある啓蒙運動の概念すべてに共通するのは、それが「抵抗」、特に知識に関する権威への抵抗だったことです。

知識に関する権威を否定することは、抽象的な分析の問題ではなく、進歩のための必要条件でした。というのは、啓蒙運動以前には、知りうる重要なことはすべて発見し尽くされ、古文書や伝統的な仮説といった権威ある知識の源に納められていると広く信じられていたからです。こうした知識の源は、一部に正しい知識を含んでいるものもありましたが、多くの誤りを伴うドグマという形で確立していました。したがって、進歩はこうした権威を否定する方法を学ぶことにかかっていました。世界最古のアカデミーの一つであり、1660年にロンドンに設立された王立協会が「nullius in verba(誰の言葉も権威としない)」をモットーとしたのはそのためでした。

 

鍵は「批判の伝統」あるいは「テスト可能性」か?

しかし、啓蒙運動において効果があったのは、権威への抵抗そのものではありませんでした。歴史的には権威が否定されることは何度もあったのです。しかし、普通はその後に新しい別の権威が入れ替わるだけでした。啓蒙運動で顕著だったのは、「批判の伝統」でした。啓蒙運動以前はそれは非常に稀な習慣で、一般的には物事を同じ状態に保つことが重要とされていました。したがって啓蒙運動とは、知識を探し求める方法についての革命でした。そのために、権威に頼らずに知識を得ようとしたのです。経験論が科学の仕組みという概念においては根本的に間違っていて権威的であったにもかかわらず、非常に有益な歴史的役割を果たしたのはこうした前後関係があったからです。

この批判の伝統によって生じた結果として、科学理論は「テスト可能」でなければならないとする方法論上のルールが生まれました。すなわち、科学理論が誤りなら、その理論が立てる予測は、実施可能な観測の結果から反論できるということです。したがって、科学理論は経験から導き出されないものの、経験(すなわち、観測または実験)によってテストできます。たとえば、かつて化学者は、元素変換は不可能だと考え、多くの実験でそれを確かめていました。やがてラザフォード(Ernest Rutherford, 1871-1937)とソディ(Frederick Soddy, 1877-1956)が、ウラニウムは自然に他の元素に変換するという、大胆な予測を行いました。そして二人はウラニウムを入れた密封容器内でラジウム元素が生成されることを実証します。それまで支配的だった理論が反証できたのは、以前の理論がテスト可能だったから、つまりラジウムの存在を検証することが可能だったためです。あらゆる物質は土、空気、火、水の4つの元素の組み合わせで構成されているという古代の理論は、テスト不可能です。この説には、そうした元素の存在をテストする方法が何一つ含まれていないためです。啓蒙運動は、根本においては哲学上の変化でした。

ガリレオ・ガリレイGalileo Galilei, 1564-1642)は、おそらく実験テストの重要性をはじめて理解した人物であり、「自然の書物を読む」ことと勘違いされがちな、他の種類の実験や観測と区別しました。ガリレオは実験によるテストを、厳しい試練による吟味を意味する「チメント」と呼び、他の種類の実験や観測とは区別していました。テスト可能性は現在は科学的手法を定義づける特徴として広く受け入れられており、ポパーはこれを科学と非科学の「境界設定基準(criterion of demarcation)」と呼びました。

 

「テスト可能性」では不十分

とはいえ、テスト可能性が科学革命の決定的要因だったわけではありませんでした。一般に言われるのとは逆に、テスト可能な予測はそれ以前からずっと、きわめてありふれたものでした。たとえば「次の火曜日に太陽が昇る」と予言する自称預言者にも、「何だか今夜はついている気がする」というギャンブラにも、テスト可能な理論があります。では、科学にはあって、預言者やギャンブラーのテスト可能な理論にはない、進歩を可能にする不可欠な材料とは何でしょうか。

科学において理論がテスト可能というだけでは十分でないのは、理論による予測が科学の目的ではないし、目的とすることもないからです。奇術を見る観客を例に考えます。観客が直面している問題は、科学的問題と論理の点でかなり似ています。いずれの場合でも、見た目がそのまま説明になっているわけではありません。奇術の説明が目で見てはっきりわかってしまえば、奇術になりません。同じように、物理現象の説明が見た目ではっきりわかるようなら、経験論は事実であり、私たちが知っている形での科学は不要となります。

奇術を何度も見れば、私たちはそのショーの結果を予想できるようになります。しかし、それはその奇術の仕組みという問題に取り組んでいません。もちろん解いてもいません。その問題を説くのに必要とされるのは説明です。この説明は、見た目を説明する、実在についての言明です。

 

説明を必要としない「道具主義」という考え方 

奇術の仕組みを知りたいなどと思わず、ただそれを面白がる人々もいるかもしれません。同じように、20世紀は、多くの哲学者が、そして多くの科学者も、科学には実在について何かを発見する能力はないという立場を取っていました。経験論から出発した議論は、科学が有効な形で行えるのは観測結果の予測までであり、科学はその観測結果を引き起こす実在を記述するものと称するべきではないということです。この考え方は「道具主義」と呼ばれています。

道具主義は、「説明」の存在を完全に否定します。その考え方は今でも非常に影響力があります。いくつかの分野(統計分析など)では、「説明」という言葉自体が予測を意味するようになっており、数式が一連の実験データを「説明する」という言い方をします。彼らの中では、「実在」には、その数式によって近似される「観測データ」という意味しかありません。そこには、実在そのものについて主張するための用語はなく、あるものは多分「便利なフィクション」です。

道具主義は、「実在論」を否定する数多くの考え方の一つです。実在論とは、物理的世界は実際に存在し、合理的探求が行えるとする、常識的で事実に反しない学説です。実在論をいったん否定してしまうと、論理的な意味合いとしては、実在についてのあらゆる主張は神話と等しくなり、いかなる客観的な意味においても、ほかの主張より優れた主張は存在しないことになります。これは「相対主義」です。相対主義とは、特定の分野における言明が客観的に真または偽ということはありえず、よくても文化的基準あるいはほかの恣意的な基準に対して相対的に判断されるだけだという学説です。 

道具主義は、科学を人間の経験に関する言明に格下げするという、哲学上の大罪を犯しています。しかしそれだけでなく、その定義自体が意味をなしていません。なぜなら、純粋に予測的で、説明を必要としない理論などというものは存在しないからです。

 

経験則も説明を伴う

知られていて、かつ議論にならない知識を「背景知識」といいます。予測的理論で、説明に背景知識しか含まれないようなものは、「経験則」と言われます。背景知識は通常、当たり前のものと考えられているので、経験則は説明を伴わない予測に思えるかもしれませんが、それは常に幻想です。

私たちがそれを知っていようといまいと、経験則が機能する理由は、かならず説明がつくものです。自然のなかの規則性に説明があることを否定するのは、事実上、超常現象を信じることと同じです。つまり、「それは奇術じゃない、本当の魔法なのだ」と言うようなものです。また、ある経験則が通用しない場合についても、かならず説明があります。一般に経験則というものは偏狭です。よく知っている狭い範囲の状況にしか当てはまりません。たとえば、コップとボールの手品に、通常と違う要素が導入されれば、私が先ほど述べた経験則が誤った予測をしがちになります。ボールではなく、火を灯したろうそくで同じ奇術ができるかどうかは、先ほどの経験則からはわからないのです。しかし、その奇術の仕組みについての説明があれば、できるかどうかは判断できます。 

 

問題=相反するアイデアを経験する状況

実験的テストの本質は、問題となっている点について、見たところ現実味のある理論が少なくとも二つ知られている場合に、それらについて実験によって区別可能な、相反する予測を行うことです。相反する予測が実験と観測の好機になるのと同様に、広い意味での相反するアイデアは、あらゆる合理的な思考や探求の好機になります。たとえば、私たちが何かについて知りたがるのは、既成のアイデアではその何かの理解や説明に不十分だと考えているという意味です。相反するアイデアを経験するような状況を、私は問題と呼びます。問題を解くということは、不一致のない説明をつくり出すことを意味します。

もともと「支えのない物体は落ちる」とか、「光には燃料が必要で、それはゼロになることがある」という予想(つまりは説明)があり、そうした予想が、星がずっと光り続け、落下することもないという、見えているものの解釈(これも説明)と矛盾しているという状況がなければ、誰も「星とは何か」という疑問を抱かなかったでしょう。この場合、間違っていたのは解釈のほうでした。実際には星は自由落下しているし、燃料も必要です。しかし、そうなる理由を発見するには、かなりの推量と批判、そしてテストが必要でした。

問題というのは、観察なしで、純粋に生じることもあります。たとえば、ある理論が、私たちが予想していなかった予測を行うという問題があります。予測は理論でもあるのです。同様に、物事の今ある状態(私たちの最善の説明に従う)が、あるべき状態(つまり、それがどうあるべきかという私たちの現行の基準に従う)と一致しない場合には、問題となります。

理論は互いに相反することもありますが、実在が相反することはないので、あらゆる問題の存在は、私たちの知識が不完全または不正確だということを示唆しています。私たちの誤解は、観測している実在、あるいはその実在と私たちの知覚の結びつき方、あるいはその両方についてでしょう。

 

神話は「テスト可能な説明的理論」だ

しかしテスト可能な説明的理論でも、進歩がない状態とある状態の違いを生み出した決定的要因とはなりえません。そうした理論も、昔から一般的だったからです。古代ギリシャ神話は、季節を説明しています。

遠い昔、冥界の神であるハデスは春の女神ペルセポネを略奪して妻とした。そこでペルセポネの母である大地と農業の女神デメテルは、ペルセポネを取り戻すため、年に一度は冥界のハデスを訪れることを余儀なくさせる魔法の果実を食べさせる取り決めを行った。ペルセポネが地下の国にいる間、悲しみにくれたデメテルは、世界に対して寒くなるよう命じた。

この神話は、完全な誤りですが、季節の説明にはなっています。その説明は、冬という経験をもたらす実在について主張しています。それはまた、テスト可能だという点でも抜きんでています。デメテルが定期的に悲しむことが冬の原因なら、冬は地球のあらゆる場所で同時にやってくるはずです。したがって、デメテルが悲しみの最中にあるとされていたまさにその時期に、オーストラリアでは植物が育つ暖かな季節になることを古代ギリシャ人が知っていたら、季節についての自分たちの説明は何か間違いがあると推測したはずです。

しかし数世紀のあいだに、神話は変化したり、ほかの神話に取って代わられたりはしても、新しい神話が真実に近づくことはほとんどありませんでした。なぜでしょうか。

スカンジナビア地方の神話では、春の神フレイは寒さと暗闇の力に対して、永遠の戦いを続けており、そうしたフレイの戦況が絶えず変わることで、季節が生じるとされていました。フレイが勝てば地球が暖かくなり、負ければ寒くなるのです。

ペルセポネ神話とフレイ神話は、実際にある季節の原因について、根本的に矛盾する内容を主張しています。しかし、誰も二つの神話の長所を互いに比べたうえで、どちらかを選択したわけではないはずです。それは、二つの神話を区別する方法はないからです。どちらの神話にもある、役割を簡単に置き換えられる部分を全て無視すれば、どちらの場合にも残るのは「神々がそれを行った」という、同じ基本的な説明です。

こうした神話がとても簡単に変更できるのは、それらの細かい部分が、現象自体の細かい部分とほとんど関連していないからです。結婚の取り決めや魔法の果実、あるいはペルセポネやハデス、デメテル、フレイといった神々を具体的に考えたところで、そうした細かい部分は、なぜ冬になるのかという問題にはまったく対処していません。さまざまな異なる理論が、説明しようとしている現象を同じようにうまく説明できる場合、そのなかの一つが他よりも良いと考える理由はありません。

 

神話は「悪い説明」だ

ペルセポネについての説明を少し変えれば、緑色の虹がかかるような季節もうまく説明できます。あるいは季節が一週間に一度めぐってきたり、規則性もなく突然起こったり、まったく起こらなかったりすることも説明できてしまいます。迷信を信じるギャンブラーや、終末論を唱える預言者も同じです。彼らは、その理論が経験によって反証されると、新しい理論に切り替えます。しかしその根底にあるのが悪い説明なので、彼らはその説明の本質を変えることなく、新しい経験を簡単に受け入れることができます。ある説明が、特定の分野では何でも簡単に説明できるのなら、それは実際には何も説明していないのです。

一般的に、ここまで説明してきたような意味で理論が簡単に変更可能である場合、実験的テストを行っても、その理論の誤りを修正するにはほとんど役立ちません。私はそうした理論を「悪い説明」と呼びます。

良い説明の探求は、科学だけではなく、啓蒙運動全般の基本的な調整原理であると、私は考えています。良い説明の探求は、知識に対する啓蒙主義のアプローチを、他のアプローチから区別する特徴であり、私が議論してきた科学的進歩のための他のあらゆる条件を暗示しています。つまり、予測だけでは不十分だということを、簡単な形で暗示しているのです。良い説明の探求は、批判の伝統の必要性も暗示しています。さらには、方法論的な規則(「実在の基準」)も暗示しています。すなわち、特定のものが現実であると結論すべきなのは、それが何かについての最善の説明にかかっている場合だけなのです。

 

良い説明であることは科学理論の必要条件

啓蒙運動や科学革命の先駆者たちは、直接そのように言っていませんが、良い説明を探求することは当時の時代精神でしたし、それは今でも変わりません。彼らは良い説明の探究によって、思考をはじめました。良い説明の追求を系統だって行ったのは、彼らがはじめてでした。良い説明の探究こそが、あらゆる種類の進歩の速度に、非常に大きな効果を及ぼしたのです。これまでの神話と科学の違いについての記述のほとんどは、テスト可能性の問題を重視しすぎていました。

科学においては、数のうえでは圧倒的に多い間違った理論を、実験をせずに、悪い説明というだけですぐに却下してかまいません。そうでなければ、科学というものは不可能です。

良い説明は、際立って単純であるか、エレガントであることが多いものです。また、悪い説明として一般的なのは、必要以上の特性や恣意性を含む説明であり、それらを取り除けば良い説明が生まれることもあります。ここから生まれたのが、オッカムの剃刀」として知られる誤解です(この名称は14世紀の哲学者ウィリアムのオッカムにちなんでいるが、考え方自体は古代からある)。オッカムの剃刀とは、人はいつでも「最も単純な説明」を探求すべきだという考え方です。その言明の一つには、「必要以上に前提を増やすべきではない」というものがあります。しかし、非常に単純な説明でも、変更が簡単にできてしまうものは数多くあります(「デメテルのしわざである」という説明など)。たしかに「必要以上」の前提は明らかに理論の質を落とします。しかし、ある理論にとって何が「必要」かについては、多くの誤ったアイデアが存在してきました。たとえば道具主義では説明自体を不要としています。第12章で議論するように、ほかの多くの悪い科学哲学でも同じように考えています。

最善の説明とは、既存の知識に大きく束縛される説明であり、そうした知識には、他の良い説明だけでなく、説明すべき現象についての他の説明も含まれます。

 

良い説明に備わる性質 

自転の傾き説は良い例です。この説はもともと、太陽の高度角が一年間で変化するのを説明するために提案されたものです。熱と回転する物体についての少しの知識を組み合わせることで、それは季節の説明になりました。さらに修正を加えなくても、季節が北半球と南半球で逆になっている理由や、熱帯地方には季節がない理由、そして極地方では夏の真夜中に太陽が輝く理由も説明しています。これら三つの現象について、自転軸の傾き説の創造者はおそらく気付いていませんでした。

説明のリーチは、「帰納原理」ではありません。説明のリーチは、説明の創造者が、説明を見つけたり、正当化したりするために使えるものではなく、創造的プロセスの一部ではないのです。説明を見つけてからでなければ、説明のリーチには気づきません。ずっと後になってから気づくこともあります。つまり、それは「外挿」や「帰納」といった、理論を「導き出す」方法とされるものとは関係がありません。むしろまったく逆です。季節の説明が、その創造者の経験のはるか外まで及ぶのは、まさにそれが外挿される必要がないからです。説明というのは本質的に、創造者がはじめて思いついたときにはすでに、地球のもう一つの半球で、そして太陽系全体、ほかの惑星、さらには別の時間で、適用されているのです。

説明のリーチは、説明自体の内容によって決まります。説明が良いほど、そのリーチはより厳密に決定されます。ある説明を変更するのが難しいほど、異なるリーチをもつ依然として説明として成り立つような別の説明を特に作りだすのは難しいからです。私たちは、火星でも重力の法則は地球と同じだと予想します。それは重力の説明として現実的なものはただ一つ、アインシュタイン一般相対性理論しか知られておらず、それが普遍的な理論だからです。しかし私たちは火星の地図が地球の地図と似ているとは予想しません。地球がどう見えるかについての私たちの理論は、優れた説明ではありますが、ほかの天体の見た目に対するリーチはないからです。ある状況のさまざまな側面のうち、どれがほかの状況に「外挿」できるかについては、常に説明的理論からわかります。普通は外挿できる側面はほとんどありません。

 

経験則について語ることも説明で有意義となる

説明的でない形式の知識、たとえば経験則や、遺伝子に内在する生物学的適応のための知識のリーチについて語ることにも意味があります。しかし、それがどんな種類なのかは、なぜその経験則が通用するのかという説明がなければわかりません。

良い説明の探求が行われなかった古い時代の思潮では、誤りや誤解を修正するための、科学のようなプロセスが認められていませんでした。進歩はまれにしか起こらなかったため、ほとんどの人はそれを経験することもありませんでした。アイデアには長いあいだほとんど変化が起こりませんでした。悪い説明であれば、たとえそのなかでは最善の説明であっても、普通はリーチがほとんどなかったので、その昔からの用途以外では(ときにはそうした用途の範囲内でも)脆弱で信頼できませんでした。

 

説明は「無限の始まり」か

科学、より広義には私が「啓蒙運動」と呼ぶものの登場は、そうした変化のない、偏狭な思想体系の終わりの始まりだったと言えます。それによって、人間の歴史に現在の時代が始まったのです。それは、広がり続けるリーチのある知識を、持続的かつ急激に創造するという点では、他に類を見ない時代です。多くの人は、これをどこまで続けられるのか疑問に思いました。

それは、本質的に有限なのでしょうか。あるいは「無限の始まり」なのでしょうか。つまり、そうした方法には、さらなる知識創造のための無限の可能性があるのでしょうか。あるいはまた、説明という、脳のなかで生じる、見たところは取るに足らない物理的プロセスについて、宇宙的枠組みで何か重要なことがあるのでしょうか? 第3章でこの問題について考えますが、その前に第2章では理論と実在の関係について考えを述べます。

 

用語解説

説明(Explanation):そこにある事物と、その振る舞い、そしてその方法と理由に関する言明。

リーチ(Reach):説明がもつ、その説明が本来解こうとしていた問題を超えた問題を解ける能力。

創造力(Creativity):新しい説明をつくり出す能力。

経験論(Empiricism):われわれがあらゆる知識を感覚的経験から導出しているとする、誤った考え。

理論負荷性(Theory-laden):「ありのままの」経験などというものはない。この世界でのわれわれの経験はすべて、意識的および無意識的な解釈という層を通過してくる。

帰納主義(Inductivism):科学理論は、繰り返し得られる経験の一般化または外挿によって獲得されるのであり、ある理論が観測によって確かめられることが多いほど、その理論はより本当らしくなるとする、誤った考え。

帰納法(Induction):帰納主義における、存在しない「獲得」のプロセス。

帰納原理(Principle of induction):「未来は過去に似ている」というアイデアが、未来についてのあらゆることを主張するという誤った考え。

実在論(Realism):〔知覚できない〕物理的世界は現実に存在し、その世界についての知識も存在するという考え。

相対主義(Relativism):言明が真か偽かの判断は客観的に行うことはできず、文化的あるいは恣意的な基準との関連でのみ判断できるとする、誤った考え。

道具主義(Instrumentalism):科学は実在を記述することはできず、観測結果を予測するだけだとする、誤った考え。

正当化主義(Justificationism):知識は、何らかの権威筋または基準によって正当化されてはじめて、真正なもの、あるいは信頼できるものになりうるとする、誤った考え。

可謬主義(Fallibilism):権威ある知識の源はなく、また知識を真、あるいは確実らしいとして正当化する、信頼できる手段もないとする認識。

背景知識(Background klowledge):よく知られていて、現在は議論の余地のない知識。

経験則(Rule of thumb):純粋に予測的な理論(説明的内容がすべて背景知識からなる理論)

問題(Problem):問題は、複数の考えのあいだに矛盾が生じる場合に存在する。

良い説明/悪い説明(Good/bad explanation):説明対象とされるものの説明を続けながら、変更を加えるのが難しい/簡単な説明。

啓蒙運動(The Enlightenment):批判の伝統をもって知識を得ようとし、権威に頼る代わりに、良い説明を探求する方法(の始まり)。

小啓蒙運動(Mini-enlightenment):短命に終わった批判の伝統。

合理的(Rational):良い説明を探求することによって問題を解決しようと試みること。既存のアイデアと新しい提案の両方に対する批判を行うことによって、誤りを積極的に修正しようとすること。

西洋(The West):科学、理性、自由という啓蒙運動の価値観の周辺で育ってきた、政治、倫理、経済、知性の文化。

 

 

 

____________________________

書評

ドイチュの本は本当に要約するのが難しいと思います。一見、ここは削って良いかな?と思う箇所も、よく読むとユニークなことを言っており、それが全体の説明の一部になっています。要約を書くときはジェンガから恐る恐る引き抜くような気持ちになります。

 

さて、ドイチュは第1章『説明のリーチ』を通して、知識創造が開始された決定的要因は「良い説明」の探求であったと結論づけました。「良い説明」こそが啓蒙運動全体のキーであり、可謬主義や実験的テストや実在の基準も「良い説明の探究」から要請される帰結であると論じています。私たちが科学や哲学に出会う入り口には、かならず「問題(=相反するアイデアを経験する状況)」があるということも強調しています。経験論や正当化主義への批判、「批判の伝統」の重要性の指摘、問題の意味などの議論は、ポパーに丁寧に沿っています。

なお、2018年のインタビューにて、ドイチュは「知識(knowledge)」を「因果関係のある情報(information that has a causal power)」であると、定義を更新したと言います。この定義は、知識を、人間の意識の問題と切り離すだけでなく、明確に物理学的に定義していると言えると思います。

ドイチュの以上の明快な整理は知識論の前進だと考えますが、いかがしょうか。

その他

チメント(cimento)について。ガリレオ・ガリレイの弟子だったヴィンチェンゾ・ヴィヴィアーニ(Vincenzo Viviani)は1657年にアカデミア・デル・チメント(Accademia del Cimento)を設立しましたが、これは伝統的な論理を重視したアカデミアではなく、初の実験に基づいたアカデミアでした。当初はAccademia delee esperienzeと名付けられていましたが、1666年にAccademia del Cimentoへ改名しました。アカデミア・デル・チメントのモットーは"try and try again"(Provando e riprovando)でした。チメンターレ(cimentare)とは「金から24純金を作る」を意味する動詞だそうです。

https://www.facarospauls.com/apps/florence-art-and-culture/4269/cimento.jpg

Lorenzo Magalotti編"Essays of natural experiences made in the Accademia del Cimento"(Saggi di naturali esperienze fatte nell'Accademia del Cimento),1666 表紙

画像は https://www.facarospauls.com/apps/florence-art-and-culture/4269/accademia-del-cimento より

木本忠昭, シルヴァーナ・デ・マイオ ,「科学アカデミーの発祥」,学術の動向, 2007, 12 巻, 3号, p.78-84